Design Space Exploration and Analysis for AI Compilers

Dr. Size Zheng

About Me

I am now machine learning system researcher scientist at ByteDance. I am in TopSeed program. I completed my Ph.D. in the School of CS at Peking University, where I was advised by Prof. Yun Liang. I also worked with Professor Luis Ceze on LLM serving and optimization from September 2023 to January 2024 as visiting Ph.D. in <u>SAMPL</u> at the University of Washington. My recent publications investigate new algorithms, abstractions, and frameworks for efficient code generation on CPU and GPU. My research has been recognized with MICRO, ASPLOS, ISCA, HPCA, TPDS, DAC, and MLSys. I received my B.S. degree in the department of Computer Intelligence Science at Peking University. I am PC member of ChinaSys; reviewer of TPDS and TACO; sub-reviewer of MICRO, PPoPP, MLSys, ICS, and ICCAD.

Selected Publications

[MICRO 2023] Size Zheng, Siyuan Chen, et al. TileFlow: A Framework for Modeling Fusion Dataflow via Treebased Analysis

[DAC 2023] Size Zheng, Siyuan Chen, et al. Memory and Computation Coordinated Mapping of DNNs onto Complex Heterogeneous SoC.

[HPCA 2023] Size Zheng, Siyuan Chen, et al. Chimera: An Analytical Optimizing Framework for Effective Compute-intensive Operators Fusion

[ISCA 2022] Size Zheng, Renze Chen, et al. AMOS: Enabling Automatic Mapping for Tensor Computations On Spatial Accelerators with Hardware Abstraction .

[TPDS 2021] Size Zheng, Renze Chen, et al. NeoFlow: A Flexible Framework for Enabling Efficient Compilation for High Performance DNN Training

[ASPLOS 2020] Size Zheng, Yun Liang, et al. FlexTensor: An Automatic Schedule Exploration and Optimization Framework for Tensor Computation on Heterogeneous System

Outline

- Al Chip
- Al Algorithm
- Al Compiler

- 2 Techniques
 - Compiler for DNN Graph
 - Compiler for Operator
 - Compiler for Distributed

- **3** Future Work
 - Triton-CuTe
 - LLM for Compiler

The Golden Age of Compilers

Two Strea Technic	ams of { jues	expert-defined optimizations	<pre>{ pattern-matching passes polyhedral model compute-schedule decomposition</pre>			
 < 2010 ATLAS < 2000 	Halide 2013	2016 2017	TORCHSCRIPT 2019 1/NNVM 2017 2019 corch/Glow 2018 hummingbird	VeGen I 2021 DNNFusion 2022	NDUCTOR 2023 TensorIR 2023	
COMPILER INFRASTRUCTURE < 2010	2015 TensorFlov	TensorFlow Lite 2017 2017 2017 TVM/Relay 2018	2020 2018 2020	BladeDISC	Graphene	
2010	2015	2017 2017 2018	ensor 😥 Comprehensions 2018	() torchdynamo 2022	2023	
<2010	<2015	<2020		<20	23	

Al Chips

Ref: MIT. Albert Reuther, et al. AI and ML Accelerator Survey and Trends.

Previous Projects

Outline

Future Work

• Triton-CuTe

• LLM for Compiler

Compiler for DNN Graph

New Operator Support Challenge

- 1. Kernel Implementation for both forward and backward
- 2. Generalized fusion optimization with other operators

Shape	Batch	In_C	Out_C	Height	Width	Capsules
	1	64	256	28	28	8
		PyTorch	TensorFlow		w NeoFlow	
Latency		1.529 ms	4.192 ms		0.451 ms	
Launch Overhead		0.473 ms	0.717 ms		0.717 ms 0.007	
Kernel Overhead		0.899 ms	2.532 ms		0.3	90 ms
Utilization		65.5%	77.9%		98.2%	

express new operators with existing operators can be inefficient

e.g., add new op: C[b, k, p, q, i, j] = A[b, c, p * 2 + r, q * 2 + s, i, k] * B[k, c, r, s, k, j],

capsule conv

NeoFlow Framework

Overview of NeoFlow

Two Techniques:

- I. Expression-based Autodiff
- 2. Generalized Fusion

Tensor Declaration

A = tensor([1, 3, 224, 224]) B = tensor([1, 3, 228, 228]) C = tensor([64, 3, 3, 3]) D = tensor([1, 64, 112, 112]) E = tensor([1, 16, 224, 224]) F = tensor([1, 19, 224, 224])

Op1: Padding

B[n, c, h, w] = Select(h>2 && h<226 && w>2 && w<226, A[n, c, h-2, w-2], 0)

Op2: Dilation Conv

D[n, k, p, q] = ReduceAdd({r, s}, B[n, c, p*2+r*2, q*2+s*2] * C[k, c, r, s])

Op3: Depth2Space

E[n, c, h, w] = **D**[n, c*4+h%2*2+w%2, h//2, w//2]

Op4: Concatenation

F[n, c, h, w] = Select(c<3, A[n, c, h, w], E[n, c-3, h, w])

Tensor Expression

Expression-based Autodiff

Insight: Autodiff for an expression is to get the reversed mapping of index

$$egin{aligned} B[x_1,\ldots,x_N] &= \mathbf{F}_{R=\{r_1,\ldots,r_L\}} \ (A_1[f_1^1(x_1,\ldots,x_N,r_1,\ldots,r_L),\ldots,f_{M_1}^1(x_1,\ldots,x_N,r_1,\ldots,r_L)], \ A_2[f_1^2(x_1,\ldots,x_N,r_1,\ldots,r_L),\ldots,f_{M_2}^2(x_1,\ldots,x_N,r_1,\ldots,r_L)], \end{aligned}$$

$$A_K[f_1^K(x_1,...,x_N,r_1,...,r_L),\ldots,f_{M_K}^K(x_1,...,x_N,r_1,...,r_L)])$$
 (

$$egin{aligned} &dA_i[z_1^i,\ldots,z_{M_i}^i] = \mathbf{H}_{R'=\{r_1',\ldots,r_P'\}} \ &(dB[g_1(z_1^i,\ldots,z_{M_i}^i,r_1',\ldots,r_P'),\ldots,g_N(z_1^i,\ldots,z_{M_i}^i,r_1',\ldots,r_P')], \ &A_1[h_1^1(z_1^i,\ldots,z_{M_i}^i,r_1',\ldots,r_P'),\ldots,h_{M_1}^1(z_1^i,\ldots,z_{M_i}^i,r_1',\ldots,r_P')], \end{aligned}$$

 $A_{K}[h_{1}^{K}(z_{1}^{i},...,z_{M_{i}}^{i},r_{1}^{\prime},...,r_{P}^{\prime}),...,h_{M_{K}}^{K}(z_{1}^{i},...,z_{M_{i}}^{i},r_{1}^{\prime},...,r_{P}^{\prime})]),$

Reverse mapping of: 1. computation operation F (easy) *r* (easy)2. index mapping *f* (hard)

Solution for Affine Transformations

Insight: For affine index transformation, the problem is reduced to solving a linear (or affine) system problem

$$egin{aligned} &f_1^i(x_1,...,x_N,r_1,...,r_L)=z_1,\ &\ldots,\ &f_{M_i}^i(x_1,...,x_N,r_1,...,r_L)=z_{M_i}, \end{aligned}$$

linear (or affine) system x are unknowns, z are constants

for quasi-affine cases:

- 1. find or create quasi-affine subexpression pairs
- 2. substitute quasi-affine subexpressions with new variables

Running Example

Out[b, k, p, q] += In[b, c, p * 2 + r, q/2 + s] * Weight[k, c, r, s]

 $dIn[z_1, z_2, z_3, z_4] \mathrel{+}= dOut[z_1, f_1, (z_3 - f_2)/2, (z_4 - f_3) * 2 + f_4] * Weight[f_1, z_2, f_2, f_3]$

Generalized Fusion

Insight: Co-optimize both forward and backward graph

- 1. Four Patterns
- 2. Cost Model
- 3. Coupled effect

Evaluate some special networks with customized operators

Training: 1.92x to CuDNN and 2.43x to XLA

Inference: 6.72x to CuDNN and 4.96x to XLA

Aggressive Fusion Challenges

Compute-intensive operators chains are hard to fuse

Shapes:

Tensor A: [M, K]

Tensor B: [K, L]

Tensor C: [M, L]

Tensor D: [L, N]

Tensor E: [M, N]

Decompose:

M→M/Tm, Tm N→N/Tn, Tn K→K/Tk, Tk

L→L/TI, TI

spatial cores

Example execution order: mlnk

Iterate along k-dim first, then n-dim, then I-dim, finally, m-dim

Chimera: Analysis Technique

Three insights:

- 1. Loop variables that are absent in tensor access won't cause data movement
- 2. When inner loops cause data movement, outer loops will also cause data movement
- 3. Loops that are private to producer operators won't cause data movement for consumer operators

Running Examples

Insight 1: Loop variables that are absent in tensor access won't cause data movement dim order: m, k, l, n dim k dim I dim n dim n for m in range(0, M, Tm): ← reuse B, D, replace A, C, E for l in range(0,L,Tl): ← reuse A, D, E, replace B, C C[m:m+Tm,l:l+Tl] + = A[m:m+Tm,k:k+Tk]@B[k:k+Tk,l:l+Tl]for l in range(0,L,Tl): \leftarrow reuse A, B, E, replace C, D for n in range(0,N,Tn): \leftarrow reuse A, B, C replace D, E E[m:m+Tm,n:n+Tn] + = C[m:m+Tm,l:l+Tl]@D[l:l+Tl,n:n+Tn]

Running Examples

Insight 2: When inner loops cause data movement, **outer** loops will also cause data movement

order: m, k, l, n

for m in range(0,M,Tm) : < replace A, B, C, D, E</pre>

C[m:m+Tm,l:l+Tl]+=A[m:m+Tm,k:k+Tk]@B[k:k+Tk,l:l+Tl]

dim l

for l in range(0,L,Tl): < reuse A, B, replace C, D, E</pre>

for n in range(0, N, Tn): < reuse A, B, C replace D, E</pre>

E[m:m+Tm, n:n+Tn]+=C[m:m+Tm, l:l+Tl]@D[l:l+Tl, n:n+Tn]

Running Examples

Insight 3: Loops that are **private** to producer operators won't cause data movement for consumer operators

order: m, k, l, n

for m in range(0,M,Tm):

for k in range(0,K,Tk):

for l in range(0,L,Tl):

Private loops, have no influence on the consumer operator

C[m:m+Tm,l:l+Tl]+=A[m:m+Tm,k:k+Tk]@B[k:k+Tk,l:l+Tl]
for l in range(0,L,Tl):

for n in range(0,N,Tn):

E[m:m+Tm, n:n+Tn] +=C[m:m+Tm, l:l+Tl]@D[l:l+Tl, n:n+Tn]

Minimize Data Movement Volume

Use Lagrange Multiplier method:

Use GEMM chain as an example (mlkn)

$$\begin{array}{|c|c|c|c|c|c|} \hline \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E} \\ \hline \mathbf{DM} & MK\lceil \frac{L}{T_L} \rceil & KL\lceil \frac{M}{T_M} \rceil & \mathbf{0} & NL\lceil \frac{M}{T_M} \rceil & MN\lceil \frac{L}{T_L} \rceil \\ \hline \mathbf{DF} & T_M T_K & T_K T_L & T_M T_L & T_L T_N & T_M T_N \\ \hline \end{array}$$

$$\begin{aligned} \mathsf{DV}_{\mathsf{GEMM Chain}} &= DM_A + DM_B + DM_C + DM_D + DM_E \\ &= MK \lceil \frac{L}{T_L} \rceil + KL \lceil \frac{M}{T_M} \rceil + NL \lceil \frac{M}{T_M} \rceil + MN \lceil \frac{L}{T_L} \rceil \end{aligned}$$

Total memory footprint should not exceed memory capacity

PyTorch 🔳 TASO 🛄 Relay 🔲 Ansor 🔲 TensorRT 🔲 TVM+Cutlass 📕 Chimera

GEMM + GEMM, Conv + Conv, 2.77x to PyTorch on CPU and 5.79x to PyTorch on GPU

Operator Mapping Challenges

Design space formalization and exploration

Hardware Resource Spatial Sharing

Map more layers at the same time to hardware

L1	L2	L3	L4	L5	L6
OS	WS	OS	WS	WS	WS
3	4	3	4	4	3
	0S 3	L1 L2 OS WS 3 4	L1 L2 L3 OS WS OS 3 4 3	L1 L2 L3 L4 OS WS OS WS 3 4 3 4	L1 L2 L3 L4 L5 OS WS OS WS WS 3 4 3 4 4

b) Layer-wise optimal dataflow and resource usage

acc1	acc2	acc3
	≒ ^{(W:}L2 	- L3 + L4 -

d) Spatial sharing mapping (not dataflow optimal)

Routing Distance in Mapping

The bandwidths between different accelerators are not the same

Layer	L1	L2	L3	L4	L5	L6
Dataflow	OS	WS	OS	WS	WS	WS
Resource (unit)	3	4	3	4	4	3

b) Layer-wise optimal dataflow and resource usage

acc1	acc2	acc3	
(0S)	🕳 (WS)	 (WS)	
	Low-BW		

Computation and Memory Coordinated Mapping

Consider both resource sharing and routing bandwidth

	acc2 (₩ L2			acc1	acc2	acc3
Execution Ste	ep 2 🔶			Execution	Step 2 🔶	
	acc2 ↓ (W L5	acc3	-	acc1 (0S)	acc2 ↔ (₩ L5	
Execution Ste	ер З 🚽			Benefits	Reduced late	encv
acc1 (0S) data transfe	acc2	acc3 (WS) data transfer		v •	Less data tra High utilizati	ansfer on consumption

How to achieve better mapping? 1. generate the design space

2. explore the design space

COMB: Space Design and DSE

Heterogeneous DNN and Heterogeneous SoC

DNN Graph

G = (V, E)

Multi-DNN Graph

$$\mathcal{G} = (G_1, G_2, ..., G_M)$$

Hetero. SoC

$$H = (A, Net)$$

$$A = \{ \operatorname{acc}_1, \operatorname{acc}_2, ..., \operatorname{acc}_N \}$$

$$Net = \{ (\operatorname{acc}_i, \operatorname{acc}_i, cost) | 1 < i, j \}$$

Properties of DNN and SoC

DNN Related Methods $Pred(L)$ Get the predecessor layers of layer $L \in V$ $DV(L)$ Data transfer volume for outputs of layer L GroupOf(L)Get the dataflow group of layer L SoC Related MethodsNumPE(acc)Get the number of PEs of accelerator accMemCap(acc)Get the scratchpad capacity of accelerator accDataflow(acc)Get the dataflow of accelerator accComm(acc1, acc2, V)The cost of transferring data of volume V from acca to acca according to Nat	Name	Explanation		
Pred(L)Get the predecessor layers of layer $L \in V$ $DV(L)$ Data transfer volume for outputs of layer L GroupOf(L)Get the dataflow group of layer L SoC Related MethodsNumPE(acc)Get the number of PEs of accelerator accMemCap(acc)Get the scratchpad capacity of accelerator accDataflow(acc)Get the dataflow of accelerator accComm(acc1, acc2, V)The cost of transferring data of volume V from acca to acce according to Net	DNN Related Methods	-		
DV(L)Data transfer volume for outputs of layer LGroupOf(L)Get the dataflow group of layer LSoC Related MethodsNumPE(acc)Get the number of PEs of accelerator accMemCap(acc)Get the scratchpad capacity of accelerator accDataflow(acc)Get the dataflow of accelerator accComm(acc1, acc2, V)The cost of transferring data of volume Vfrom accy to acce according to Net	Pred(L)	Get the predecessor layers of layer $L \in V$		
GroupOf(L)Get the dataflow group of layer LSoC Related MethodsNumPE(acc)Get the number of PEs of accelerator accMemCap(acc)Get the scratchpad capacity of accelerator accDataflow(acc)Get the dataflow of accelerator accComm(acc1, acc2, V)The cost of transferring data of volume Vfrom acca to acce according to Nat	$\mathrm{DV}(L)$	Data transfer volume for outputs of layer L		
SoC Related Methods NumPE(acc) Get the number of PEs of accelerator acc MemCap(acc) Get the scratchpad capacity of accelerator acc Dataflow(acc) Get the dataflow of accelerator acc Comm(acc1, acc2, V) The cost of transferring data of volume V from acce to acce according to Net	$\operatorname{GroupOf}(L)$	Get the dataflow group of layer L		
NumPE(acc)Get the number of PEs of accelerator accMemCap(acc)Get the scratchpad capacity of accelerator accDataflow(acc)Get the dataflow of accelerator accComm(acc1, acc2, V)The cost of transferring data of volume Vfrom acce to acce according to Net	SoC Related Methods			
MemCap(acc)Get the scratchpad capacity of accelerator accDataflow(acc)Get the dataflow of accelerator acc $Comm(acc_1, acc_2, V)$ The cost of transferring data of volume Vfrom acce to accelerator accfrom accelerator accelerat	NumPE(acc)	Get the number of PEs of accelerator acc		
Dataflow(acc)Get the dataflow of accelerator acc $Comm(acc_1, acc_2, V)$ The cost of transferring data of volume Vfrom acce to accelerating to Nat	MemCap(acc)	Get the scratchpad capacity of accelerator acc		
$\begin{array}{c c} Comm(acc_1, acc_2, V) \end{array} \begin{array}{c} The cost of transferring data of volume V \\ from acc_2, to acc_2, according to Net \end{array}$	Dataflow(acc)	Get the dataflow of acceleraotr acc		
$continuation(acc_1, acc_2, v)$ from acc_ to acc_ according to Net	Comm(acc. acc. V)	The cost of transferring data of volume V		
nom acc1 to acc2 according to IVet	$\operatorname{Comm}(\operatorname{acc}_1, \operatorname{acc}_2, V)$	from acc_1 to acc_2 according to Net		

a) Multi-DNN example (a local part)

b) Different Dataflow Grouping Choices

The layers in the same group will use the same dataflow

Mapping Multi-DNN Graph to Heterogeneous SoC

< N

Graph Grouping

$$D_1 \preceq D_2 \preceq \cdots \preceq D_K \quad \text{where} \quad D_i = \{L_1^i, L_2^i, \dots L_{P_i}^i\}$$
$$D_i \cap D_{i'} = \emptyset \quad \forall i \neq i', (D_1 \cup \dots \cup D_K) = (V_1 \cup \dots \cup V_M)$$
$$L_j^i \in (V_1 \cup \dots \cup V_M) \quad 1 \leq i \leq K, \ 1 \leq j \leq P_i$$

The Optimization Problem

 $\min_{D_1 \preceq \ldots \preceq D_K, Map, Time} \max_i \{Time(D_i) + Cost(D_i)\}$

Group Mapping

 $Map: \{D_1, D_2, ..., D_K\} \to A$ $Time: \{D_1, D_2, ..., D_K\} \to \mathcal{R}$

Constraints

 $\sum_{j} \text{PEUsage}(L_{j}^{i}, \text{Dataflow}(Map(D_{i}))) \leq \text{NumPE}(Map(D_{i}))$ $\sum_{j} \text{MemUsage}(L_{j}^{i}, \text{Dataflow}(Map(D_{i}))) \leq \text{MemCap}(Map(D_{i}))$

 $Time(D_j) \ge Time(D_i) + Cost(D_i), \quad \forall D_i \preceq D_j \text{ and } D_j \nleq D_i$

Different Mapping Choices

Different Accelerator Mapping Choices (left: 5 hops, right: 3 hops)

The layers communicate with each other via:

- 1) intra-accelerator communication (on-chip memory)
- 2) inter-accelerator communication (routing)

DSE Algorithm

Speedup to H2H: 1.23X – 1.91X

Geometric Mean Speedup to H2H: 1.38X

Outline

Compiler for Operator

General Auto-Scheduling

Auto-Scheduling: creating passes with composable schedule primitives

Assumptions:

- 1. Schedule primitives are general enough for hardware
- 2. It is possible to produce comparable performance using schedule primitives

These assumptions are true for pre-Volta NV GPUs and other GPUs that are similar to NV GPUs

focus on algorithm

Ш́

hide hardware details from

users

only expertise in algorithm

FlexTensor: Space Formalization and DSE

Space Reorganization

Insight: Most design points are similar, the design space has locality

Reorganize the space into high-dimensional space enables efficient DSE

DSE with RL and Heuristic

Use Simulated Annealing to find start points

choose from 1, 2, and 3 known value: v^1 , v^2 , v^3 the best one known: v^* choose according to possibility: $e^{-\gamma \frac{(v^*-v^i)}{v^*}}$, i = 1, 2, 3allow choosing multiple points

evaluated

points

Use Q-Learning to predict modification direction of current point

- 1. keep record of visited points: discard ④
- 2. use DQN algorithm to predict Q-value of each direction: q^1 , q^2 , q^3
- 3. choose the largest one: $q^* = max(q^i), i = 1, 2, 3$

Tensor Computations						
Operator	Abbr.					
GEMV	GMV					
GEMM	GMM					
Bilinear	BIL					
1D convolution	C1D					
Transposed 1D convolution	T1D					
2D convolution	C2D					
Transposed 2D convolution	T2D					
3D convolution	C3D					
Transposed 3D convolution	T3D					
Group convolution	GRP					
Depthwise convolution	DEP					
Dilated convolution	DIL					

only use CUDA Cores on GPUs: P100 1.68x to CuDNN V100 1.83x to CuDNN Titan 1.71x to CuDNN

AI Chips are Increasingly Customized

Level 2: Global Memory + Cores Use dataflow architectures for higher performance and lower energy

Challenge: optimization beyond the scope of general scheduling

AMOS: Generalize Intrinsic Mapping

Insights:

- **1. Most intrinsics just represent BLAS semantics**
- 2. Operator expression can be factorized into smaller BLAS operations

Intrinsic Semantics

Most intrinsics just represent BLAS semantics

Level 1 **Vector Operations**

= a[i,k]*b[k] c[i]

c0	_	a00	a01	a02	a03		b0
c1	-	a10	a11	a12	a13	V	b1
c2		a20	a21	a22	a23	X	b2
c3		a30	a31	a32	a33		b3

				b00	b01	b02	b03
				b10	b11	b12	b13
				b20	b21	b22	b23
				b30	b31	b32	b33
a00	a01	a02	a03	c00	c01	c02	c03
a10	a11	a12	a13	c10	c11	c12	c13
a20	a21	a22	a23	c20	c21	c22	c23
a30	a31	a32	a33	c30	c31	c32	c33

Level 2 **Matrix-Vector Operations**

Level 3 **Matrix-Matrix Operations**

c[i,j] = a[i,k]*b[k,j]

Matching Intrinsic and Expression

(+∋ n k р (* Example 1 q С $(\square$ (C)(i k (B) + (+) C (n)A(r)(s)(k)(c)k' B S SW AST (A)(k)(j)HW AST Mapping <mark>(q)</mark>(s) (+) (+ =) k р Example 2 a k' С (C)(p)(q)(k)(n)([]k' HW AST $A(k^{\prime})$ (B) S SW AST A(r) s(k) c(c <mark>(n</mark>) Mapping S

Mali GPU: Bifrost architecture with dot intrinsic

AVX-512 CPU: with VNNI instructions

Nvidia Tensor Core GPU: with WMMA intrinsic

c[i,j] = a[i,k]*b[k,j]

a00	a01	a02	a03	
a10	a11	a12	a13	
a20	a21	a22	a23	
a30	a31	a32	a33	

c00	c01	c02	c03	
c10	c11	c12	c13	
c20	c21	c22	c23	
c30	c31	c32	c33	

Convolution data layout transformation

4x4 Tile

5

3

4x9 matrix

6

9

10

Extern "C" __globbs__ void Constit_Function_Rennel/(haif* __ nvcudar:wwwarsfragment-nvcudar:wmmarsaccumulator, 8, 32 __shared__ half Pod_wmap_input_cmap_input_shared[5136]; __shared__ half 8_vmap_input_cmap_input_shared[5144]; nvcudar:wwwarsfragment-nvcudar:wmmarshared[5144]; nvcudar:wwwarsfragment-nvcudar:wmmarshared[5144]; nvcudar:wwwarsfragment-nvcudar:wmmarshared[5144]; nvcudar:wwwarsfragment-nvcudar:wmmarshared[5144]; nvcudar:wmmarsfragment-nvcudar:wmmarshared[5144]; nvcudar:wmmars

generated code with Tensor Core

Outline

Communication Optimization Challenge

Training

	Comm. Ratio	Comp. Ratio
A100-PCle	40%-70%	30%-60%
A100-NVLink	~10%	~90%
H800-NVLink	~20%	~80%

Inference

	通信占比	计算占比
A100-PCle	50%-80%	20%-50%
A100-NVLink	>20%	<80%
H800-NVLink	20%-50%	50%-80%

Bubble caused by communication lowers overall compute utilization

Overlapping Compute and Communication

Latency increased because of interference

Overlapped, utilization raises to 75%

Different Methods

Method 1: Operator Decomposition

Sync sync tiles of computation

tiles of computation

Method 2: Fine-grained Barrier

Operator Decomposition

Issues:

- 1. Low resource utilization
- 2. Quantization inefficiency
- 3. Stream uncertainty Advantages:
- **1. Easy to implement**

[1] Overlap Communication with Dependent Computation via Decomposition in Large Deep Learning Models [2] PyTorch Async-TP: https://discuss.pytorch.org/t/distributed-wtorchtitan-introducing-async-tensorparallelism-in-pytorch/209487

Fine-grained Barrier

Barrier on Device

(a) Workflow of overlap on rank 0. Rank 0 starts with chunk 0.

(b) Workflow of overlap on rank 1. Rank 1 starts with chunk 1.

[1] Breaking the Computation and Communication Abstraction Barrier in Distributed Machine Learning Workloads

Issues:

- 1. hard to implement
- 2. resource conflict Advantages:
- 1. fine-grained control
- 2. better performance

Example code in CUDA

#if (CUDA_ARCH >= 700)
<pre>/// SM70 and newer use memory consistency qualifiers</pre>
// Acquire pattern using acquire modifier
asm volatile ("ld.global.acquire.gpu.b32 %0, [%1];\n" : "=r"(state) : "l"(ptr));
UTLASS_DEVICE
tatic void wait_eq(void *lock_ptr, int thread_idx, int flag_idx, T val = 1)
T *flag_ptr = reinterpret_cast <t+>(lock_ptr) + flag_idx;</t+>
if (thread idx == 0)
{
// Spin-loop
#pragma unroll 1
<pre>while(ld_acquire(flag_ptr) != val) {}</pre>
) <u> </u>
Sync::sync();

FLUX

Opensource: https://github.com/bytedance/flux

	Μ	К	Ν	Torch Gemm	Torch NCCL	Torch Total	Flux Gemm	Flux Comm	Flux Total
AG+Gem m (A800)	4096	12288	49152	2.438ms	0.662ms	3.099ms	2.378ms	0.091ms	2.469ms
Gemm+RS (A800)	4096	49152	12288	2.453ms	0.646ms	3.100ms	2.429ms	0.080ms	2.508ms
AG+Gem m (H800)	4096	12288	49152	0.846ms	0.583ms	1.429ms	0.814ms	0.143ms	0.957ms
Gemm+RS (H800)	4096	49152	12288	0.818ms	0.590ms	1.408ms	0.822ms	0.111ms	0.932ms

Use fine-grained barrier method.

Give the best performance on GPUs so far.

Triton-FLUX

Use Compiler for Compute-Communication Overlapping

Mostly focus on barrier-related semantics

Related Work:

[1] Breaking the Computation and Communication Abstraction Barrier in Distributed Machine Learning Workloads
[2] Overlap Communication with Dependent Computation via Decomposition in Large Deep Learning Models
[3] Triton All Gather GEMM: <u>https://github.com/yifuwang/symmmem-recipes/tree/main</u>

Triton: code-gen for computation part

Triton

This is the development repository of Triton, a language and compiler for writing highly efficient custom Deep-Learning primitives. The aim of Triton is to provide an open-source environment to write fast code at higher productivity than CUDA, but also with higher flexibility than other existing DSLs.

The foundations of this project are described in the following MAPL2019 publication: <u>Triton: An Intermediate</u> <u>Language and Compiler for Tiled Neural Network Computations</u>. Please consider citing this work if you use Triton!

The <u>official documentation</u> contains installation instructions and tutorials. See also these third-party <u>Triton</u> <u>puzzles</u>, which can all be run using the Triton interpreter -- no GPU required.

Triton has achieved comparable performance for computation (GEMM) to hand-optimized libraries (CUTLASS)

Support Communication Instructions

Intra-GPU and Inter-GPU:

synchronization and barrier

sync within threadblock

def __syncthreads():
 inline_asm("bar.sync 0;")

load barrier

def ld_acquire(ptr, scope):
 return inline asm("ld.global.acquire.{scope}.b32 \$0, [{ptr}];")

increase barrier

def red_release(ptr, scope, value):
 inline_asm("red.release.{scope}.global.add.s32[{ptr}], {value};")

spin lock

```
def wait_eq(ptr, value):
   while (ld_acquire(ptr, "sys") != value):
      pass
```

49

High-level Primitives

Block-level Communication primitives :

for peer-to-peer or producerconsumer communications

block-level producer push scatter all

```
def producer_block_push_scatter_all(block_id, data):
    for dst_rank in range(WORLD_SIZE):
        dst_ptr = retrieve_dst_ptr(block_id, dst_rank)
        store(dst_ptr, data)
```

block-level producer push signal and consumer wait signal

```
def producer_push_signal(block_id):
    __syncthreads()
    barrier_ptr = retrieve_barrier_ptr(block_id)
    if tid(axis=0) ==0:
       red_release(barrier_ptr, "sys", 1)
def consumer_block_wait(block_id, data):
    barrier_ptr = retrieve_barrier_ptr(block_id)
    if tid(axis=0) == 0:
       wait_eq(barrier_ptr, 1)
    __syncthreads()
```

Pointer-control: Get remote pointers from only rank_id and block_id

Triton Extension

Enhance Triton Compiler: Compute-Communication within one Triton kernel

All Gather Kernel Implementation

@triton.jit

@sc.jit(backend="triton")
def kernel_producer_all_gather_all2all_push(
 local_tensor_ptr,allgather_tensor_group,m,n,stride_m,stride_n,
 BLOCK_SIZE_M: tl.constexpr,
 BLOCK_SIZE_N: tl.constexpr.

b ock_channel: scl.BlockChannel2D,

pid = tl.program_id(0)
offs_m = (pid * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % m
for n_idx in range(0, tl.cdiv(n, BLOCK_SIZE_N)):
 offs_n = n_idx * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
 mask = offs_n[None, :] < n
 local_ptrs = local_tensor_ptr + (
 offs_m[:, None] * stride_m + offs_n[None, :] * stride_n</pre>

row_data = tl.load(local_ptrs, mask=mask, other=0.0)
scl.producer_block_push_scatter_all(
 block_channel,allgather_tensor_group,row_data,pid,n_idx,m,n,
 stride_m,stride_n,BLOCK_SIZE_M,BLOCK_SIZE_N,tl.float16,)
scl.producer_block_push_signal(block_channel, pid, n_idx)

sc.jit: Python AST transformation before triton.jit

block channel is a data structure that encapsulates the mapping among block_id, rank_id, remote_pointers, and barriers

- use primitives to complete communication

Triton Extension

Enhance Triton Compiler: Compute-Communication within one Triton kernel

Consumer of All Gather: Just Standard GEMM Implementation with Communication Primitives

```
offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M)
offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
scl.consumer block wait(block channel, pid m, 0)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
    a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)</pre>
    b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)</pre>
    accumulator = tl.dot(a, b, accumulator)
    a_ptrs += BLOCK_SIZE_K * stride_ak
    b_ptrs += BLOCK_SIZE_K * stride_bk
if (c_ptr.dtype.element_ty == tl.float8e4nv):
    c = accumulator.to(tl.float8e4nv)
else:
    c = accumulator.to(tl.float16)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
```

c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)</pre>

tl.store(c_ptrs, c, mask=c_mask)

A single line of code added to previous GEMM kernel

Support TP-MLP, TP-MoE, SP-Attention

Performance Comparable or Better than Hand-Optimized Code

dimension	length, I i	is intermediat	e size, E i	s numl	per of experts		
Configurations of MLP							
Name	S	н	Ι	Source Model			
MLP-1	8192	4096	11008	LI	LaMA-7B		
MLP-2	8192	4096	14336	LLaMA-3.1-8B			
MLP-3	8192	3584	14336	Gemma-2-9B			
MLP-4	8192	4608	36864	Gemma-2-27B			
MLP-5	8192	8192	28672	LLaMA-3.1-70B			
MLP-6	8192	8192	29568	Qwen-2-72B			
Configuration of MoE							
Name	S	н	Ι	Е	topk		
MoE-1	8192	2048	1536	8	2		
MoE-2	8192	2048	1536	32	2		
MoE-3	8192	2048	1536	32	5		
MoE-4	8192	4096	2048	8	2		
MoE-5	8192	4096	2048	32	2		
MoE-6	8192	4096	2048	32	5		
Configuration of self-attention							
Name	heads	head dim	sequen	ce len	gth choices		
Attn-1	32	128	16k,	32k, 6	4k, 128k		
Attn-2	64	128	16k,	32k, 6	4k, 128k		

Table 4. Benchmark Shapes. S is sequence length. H is hidden

AG+Gather+Group GEMM 30 20 10 0 MOE-1 MOE-2 MOE-3 MOE-4 MOE-5 MOE-6 GEOMEAN Group GEMM+Scatter+Topk Reduce+RS **Relative Performance** 20 10 MOE-1 MOE-2 MOE-3 MOE-4 MOE-5 MOE-6 GEOMEAN Full MoE Layer 20 10 0 MOE-1 MOE-2 MOE-3 MOE-4 MOE-5 MOE-6 GEOMEAN CUBLAS+NCCL CUTLASS+NCCL VLLM-OD OUTS

Outline

Future Work

Triton-CuTe From Triton Language to CUDA source code generation

Triton Performance Issue:

- 1. Performance is bad for some operators (e.g., GroupGemm)
- 2. Rigid pipeline control and resource control

Triton-CuTe Plan:

- 1. CUDA source code generator
- 2. Generate code using CuTe templates

LLM for Compiler LLM as Compiler and LLM –guided Code-gen

Manually-designed Passes are Hard to Generalize:

- 1. Generalize to new Ops (e.g., MMA pipeline for load with barrier)
- 2. Generalize to new language (e.g., pipelines for CUDA transferred to other languages)