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Abstract—Deep neural networks (DNNs) are increasingly deployed in various image recognition and natural language processing
applications. The continuous demand for accuracy and high performance has led to innovations in DNN design and a proliferation of
new operators. However, existing DNN training frameworks such as PyTorch and TensorFlow only support a limited range of operators
and rely on hand-optimized libraries to provide efficientimplementations for these operators. To evaluate novel neural networks with
new operators, the programmers have to either replace the holistic new operators with existing operators or provide low-level
implementations manually. Therefore, a critical requirement for DNN training frameworks is to provide high-performance
implementations for the neural networks containing new operators automatically in the absence of efficient library support. In this
article, we introduce NeoFlow, which is a flexible framework for enabling efficient compilation for high-performance DNN training.
NeoFlow allows the programmers to directly write customized expressions as new operators to be mapped to graph representation and
low-level implementations automatically, providing both high programming productivity and high performance. First, NeoFlow provides
expression-based automatic differentiation to support customized model definitions with new operators. Then, NeoFlow proposes an
efficient compilation system that partitions the neural network graph into subgraphs, explores optimized schedules, and generates
high-performance libraries for subgraphs automatically. Finally, NeoFlow develops an efficient runtime system to combine the
compilation and training as a whole by overlapping their execution. In the experiments, we examine the numerical accuracy and
performance of NeoFlow. The results show that NeoFlow can achieve similar or even better performance at the operator and whole
graph level for DNNs compared to deep learning frameworks. Especially, for novel networks training, the geometric mean speedups of
NeoFlow to PyTorch, TensorFlow, and CuDNN are 3.16X, 2.43X, and 1.92X, respectively.

Index Terms—Deep learning, training, code generation, compiler optimization, automatic differentiation
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1 INTRODUCTION

EEP neural networks (DNNs) have gained great break-

throughs in various domains including image process-
ing [1], [2], [3] and natural language processing [4], [5], [6]. The
excellent performance of these DNNs often comes with a long
training time. Commonly, training a model may take hours or
even days. Today, the best practice of training DNN models is
to use frameworks such as PyTorch [7], TensorFlow [8], and
MxNet [9]. The users implement their DNN models in these
frameworks by defining the DNN graph, In general, a DNN
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graph is composed of a series of tensors and operators, where
a tensor is regarded as a multidimensional array and an opera-
tor is a function applied to the tensors (e.g., convolution). After
that, the deep learning frameworks rely on high-performance
hand-optimized libraries to accelerate the execution of DNN
graphs. For example, on Nvidia GPUs, PyTorch and Tensor-
Flow leverage CuDNN library [10] to accelerate DNN opera-
tors such as convolution and batch normalization by mapping
them to the corresponding APIs of CuDNN.

The dramatic growth in use has bolstered new DNN
models such as CapsuleNet [11], [12], [13], MI-LSTM [14],
and SC-RNN [15]. However, existing DNN training frame-
works heavily rely on hand-optimized libraries and thus
lack support for these emerging DNN models with new
operators. For example, there is currently no implementa-
tion of capsule convolution [11], [12], [13] in CuDNN, and
as a result, deep learning frameworks can’t provide an effi-
cient implementation for this operator. There are two possi-
ble approaches to deal with this problem. One approach is
to use existing operators to assemble a computation graph
that is functionally equivalent to the new operator. For
example, the users can use several 2D convolutions to sub-
stitute a capsule convolution by assembling the results of
these convolutions. However, this approach breaks a holis-
tic operator into small operators and introduces additional
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tensor transformation overhead such as slicing and reshap-
ing, resulting in a complex implementation and low perfor-
mance. More importantly, this manual process requires
significant effort and scales poorly as the number of new
operators increases. Another approach is to implement the
low-level kernels (e.g., CUDA kernels) manually for the
new operator and register them into the deep learning
frameworks. But the low-level kernel programming and
optimization is time-consuming and error-prone. A less
optimized implementation often results in low perfor-
mance. Besides, supporting new operators in training
requires extensive modification to the deep learning frame-
work as the users have to infer the gradients of new opera-
tors and implement them manually.

Recently, deep learning compilers have gained more and
more attention, which can generate an efficient implementa-
tion for new DNN operators without hand-optimized
library support. The users just need to write a short expres-
sion in domain-specific languages (DSLs), and these com-
pilers will generate low-level code for the users. For
example, Halide [16] and TVM [17] require the users to
write compute language and schedule language to generate
low-level code for operators. PlaidML [18] and Tensor Com-
prehensions [19] take high-level expressions as inputs and
generate high-performance code via polyhedral model.
Some frameworks [20], [21], [22] have integrated these com-
pilers for DNNs. PyTorch can redirect inference tasks to
TVM [20]; JAX [23] supports fine-grained autodiff and code
generation with the support of XLA [24]; nGraph [22] lever-
ages PlaidML to generate code for training, but the users
have to use existing primitives to describe their DNNs in
JAX and nGraph; Relay [21] only has very rudimentary sup-
port for training and is still not usable for real training tasks.

Although the integration of deep learning compilers
into deep learning frameworks is appealing, several chal-
lenges remain. First, to enable new operators for training,
the users have to manually implement the computation of
gradients for the new operators. Second, the unoptimized
implementation of new operators often results in low per-
formance and sophisticated optimizations that elaborately
optimize the new operators globally at the DNN graph
level are necessary. Third, the compilation and code gener-
ation could be prohibitively long, which may delay the
whole process of training. Therefore, the runtime system
needs to balance the compilation overhead and execution
gain for training.

In this paper, we introduce NeoFlow, a flexible frame-
work for enabling efficient compilation for high-perfor-
mance DNN training. NeoFlow provides both high
programming productivity and high performance through
innovations in DNN model representation and optimiza-
tion, compilation and code generation, and efficient runtime
system. For DNN model representation, NeoFlow proposes
to treat expressions written by the users as operators and
constructs DNN graphs by directly linking these operators
with tensors. NeoFlow applies automatic model transforma-
tions to optimize the DNN model and develops an expres-
sion-based automatic differentiation flow. For DNN model
compilation, NeoFlow partitions the DNN graph into sub-
graphs and explores optimization schedule spaces for each
subgraph. The optimized schedules are used in the code
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generation process to generate a high-performance library
for each subgraph.

For DNN graph execution, NeoFlow proposes a runtime
system that seamlessly integrates the compilation and train-
ing. The runtime can use the optimized library generated by
the compilation in either static or dynamic mode. In static
mode, the subgraphs are compiled ahead of time and the
libraries are invoked at runtime. This mode is normally use-
ful when the DNN models are stabilized. In dynamic mode,
the subgraphs are compiled dynamically to generate librar-
ies. The code generation at the subgraph level helps to miti-
gate the compilation overhead and we carefully design the
runtime system to allow the subgraphs to be compiled
incrementally so that the optimized libraries can be used in
the subsequent iterations of mini-batch training. The DNN
model execution at early iterations also provides feedback
to guide the selection of optimization schedules for the later
iterations. This mode is normally useful when the DNN
models are evolving and the users desire interactive feed-
back during training.

In summary, this paper makes the following contributions:

e  We propose NeoFlow, a flexible framework for enabl-
ing efficient compilation for high-performance DNN
training. NeoFlow can support DNN models contain-
ing new operators automatically and efficiently.

e We design an expression-based automatic differenti-
ation for DNNs with novel operators. We also pro-
pose automatic model transformation techniques to
optimize DNN models.

e We develop a DNN compilation and runtime system
that seamlessly integrate incremental subgraph com-
pilation and code generation for high-performance
training.

Experiments using various novel DNN models including
CapsuleNet [12], MI-LSTM [14], and SC-RNN [15] show
that NeoFlow can achieve better performance. The geomet-
ric mean speedups to PyTorch, TensorFlow, and CuDNN
are 3.16X, 2.43X, and 1.92X, respectively.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background of deep
learning frameworks and compilers. Then, we present the
motivation of NeoFlow.

2.1 Deep Learning Frameworks

Deep learning frameworks [7], [8], [9] are complex systems
that perform diverse functions including tensor manage-
ment, automatic differentiation, library invocation, etc. To
use these frameworks, the users construct a DNN graph by
writing a high-level language (e.g., in Python) where the
graph nodes are operators and graph edges are tensors. The
users define a forward part of the DNN graph, and the
frameworks will automatically figure out the gradient calcu-
lation for each operator, forming a backward graph for
training. In Fig. 1, we show a simple example of DNN graph
for training. It is composed of three parts. The forward and
loss parts are provided by users, while the backward part is
automatically generated by the framework. The funcl to
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e Input placeholder
o label placeholder

@ weight placeholder

func1: grad MSE for ReLU
func2: grad ReLU for Mul
func3: grad Mul for Conv
func4: grad Mul for weight 2 .
func5: grad Conv for weight 1 L

> gradient W2

j gradient W1

Fig. 1. An example DNN graph with forward part, loss part, and back-
ward part.

funch are also operators, which are automatically appended
to the graph.

To accelerate DNN training, deep learning frameworks
map the training graphs to hand-optimized libraries. The
libraries include CuDNN [10] and CuBLAS [25] for Nvidia
GPUs, MKL [26] and OneDNN [27] for Intel CPUs, etc.
Based on these libraries, frameworks such as PyTorch [7]
can support thousands of operators.

2.2 Deep Learning Compilers

Recently, important practical advances have occurred in
deep learning compilers [16], [17], [18], [19], which take
high-level expressions as inputs and generate low-level
code such as C and CUDA automatically. The input expres-
sion describes the mathematical logic of a calculation. To
generate high-performance code, compilers such as Tensor
Comprehensions [19] and PlaidML [18] rely on cost models
to guide code generation, while Halide [16] and TVM [17]
employ writing schedule languages to control sophisticated
loop transformations and hardware-specific optimizations,
such as loop tiling, unrolling, and vectorization. To find the
optimal combination of schedules is hard and requires a
long time of exploration in the huge schedule space during
compilation. Previous work proposes to use machine learn-
ing techniques to guide the schedule search. Typical frame-
works include Halide autoscheduler [28], AutoTVM [29],
Chameleon [30], FlexTensor [31], and Ansor [32]. But they
all focus on inference scenarios and rely on other graph-
level frameworks such as Relay [21] to handle the DNN
model representation and optimization.

To compile a whole DNN model, existing compilers
employ two levels of representation: graph IR and operator
IR. Graph IR is composed of various nodes that represent dif-
ferent operators. For example, Relay [21] uses specific nodes
to represent 2D convolution and matrix multiplication. Dur-
ing compilation, these nodes in graph IR are lowered to oper-
ator IR which is composed of loop nests. This two-level IR
infrastructure makes it hard to support training and code
generation within the same framework. First of all, if the
compilers employ automatic gradient algorithm that is
widely used in current deep learning frameworks such as
PyTorch [7] and TensorFlow [8], it is likely to generate unrec-
ognized operators that can’t be lowered by the compiler. For
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shape | Batcn | nc | ouc | Height | Widtn | Copsues
1 64 256 28 28 8

PyTorch TensorFlow NeoFlow

Latency 1.529 ms 4.192 ms 0.451 ms
Launch Overhead 0.473 ms 0.717 ms 0.007 ms
Kernel Overhead 0.899 ms 2.532ms 0.390 ms

Utilization 65.5% 77.9% 98.2%

Fig. 2. Performance of capsule convolution.

instance, the gradient operator of capsule convolution [11],
[12], [13] is another new operator that is not supported by
any framework or compiler. Second, if the compilers choose
to implement automatic differentiation at the operator level,
then they can hardly apply graph optimization such as oper-
ator fusion because the existing automatic differentiation
algorithm based on loop-level IR restricts the operators to be
represented by perfect loop nests [33], [34], but fusion tends
to produce imperfect loop nests.

2.3 Motivation

Here we use an example of capsule convolution [11], [12],
[13] to illustrate the challenges of accelerating the training
of novel DNNs with new operators. Capsule convolution’s
calculation expression is

C[b7 k7p7q7i7j:| = A[b"c7p*2+r7q*2+s'l7 k:| *B[k7c"7‘7 87k7j:|7

where A, B,C are tensors. Capsule convolution is a core
operator in CapsuleNet [11], [12], [13], which is designed to
better model hierarchical relationships. However, there is
currently no library support for capsule convolution. To
support this operator, one choice is to split it into a series of
small 2D convolutions and then produce output tensor by
concatenating the partial results of these 2D convolutions.

We present the performance of capsule convolution in
PyTorch and TensorFlow on Nvidia Tesla V100 GPU in
Fig. 2. The problem size, kernel launch overhead, and
device utilization are presented. The implementation in
PyTorch and TensorFlow uses 8 2D convolution to assemble
the results of capsule convolution, which is inefficient due
to frequent kernel launch and low resource utilization. Neo-
Flow’s capsule convolution achieves high speedup by
implementing the computation within one kernel. To use
capsule convolution in training tasks without code genera-
tion, we have to manually infer the gradient operators for
capsule convolution and implement the low-level code,
which requires great expertise and is time-consuming. In
this paper, we propose NeoFlow leverage code generation
techniques to support high-performance training with new
operators automatically.

3 OVERVIEW OF NEOFLOW

Fig. 3 shows the overview of NeoFlow, which includes three
parts: model definition, graph compilation, and graph execu-
tion. In the model definition part, NeoFlow defines a DNN
model using expressions. The expressions are regarded as
operators, while the symbolic inputs and outputs of the
expressions are tensors. The defined model is then optimized
by NeoFlow’s automatic model transformations including
layout transformation for better data access pattern and
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Graph & Model Expression
Expressions Transform Autodiff
T .
O SRS PE PO UPR PPN lower-.....modekdef
Compile Round 4
Code Kernel Scope
Generation ‘\ Partition
Code latency Auto /
Evaluation | feedback | Scheduling
T compilation
..... BAGR-perflib ===+ =+ 551 et s st e s e e e
Graph Saved
Execution Library
Weights Trained
Train Iteration Update Model execution

Fig. 3. Overview of NeoFlow.

parallel operator fusion for simple graph structure. After
model transformation, NeoFlow performs automatic differ-
entiation (autodiff) to obtain the gradient graph, forming a
new training graph. In the graph compilation part, NeoFlow
partitions the entire DNN graph into subgraphs. To compile
the subgraphs into efficient libraries, NeoFlow applies
sophisticated optimizations including expression fusion,
block/thread decomposition, data buffer configuration, loop
unrolling, and vectorization within the subgraph. In the
graph execution part, NeoFlow invokes the libraries from
the compilation part in topological order to perform graph
execution and weight updating. The final outputs of Neo-
Flow are the generated high-performance library and a
trained model. NeoFlow provides both programming pro-
ductivity and high performance. To encourage the innova-
tion of new operators in DNNs and promote the
development of ground-breaking DNNs, NeoFlow allows
users to design new operators by writing mathematical
expressions in Python.

4 MODEL REPRESENTATION AND OPTIMIZATION

Existing tensor compilers such as TVM [17] and PlaidML [18]
are limited in training because of their two-level IR infra-
structure. NeoFlow uses a single-level expression-based IR
system to represent graphs and operators, which makes it
possible to define a DNN model by writing simple expres-
sions. Then, we will introduce automatic differentiation and
model optimization using the proposed expression-based
representation.

4.1 Expression-Based Representation

As introduced in Section 2.2, existing compilers [17], [18],
[19] use two levels of IR for compilation, which limits their
support for training. In NeoFlow, we use a single level of IR
for the compilation of both graph and operator. We name
the IR as expression-based representation because the IR
depicts the mathematical computation definition of the
whole DNN model through simple arithmetic expressions.
To capture all the information of a DNN model within a sin-
gle level of IR, we focus on two aspects: how many data ele-
ments each layer produces and how each data element is
produced by the layer. The first aspect is captured by tensor
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Tensor Declaration Op1: Padding

B[n, c, h, w] = Select(
h>2 && h<226 && w>2 && w<226,
Aln, ¢, h-2, w-2], 0)

A =tensor([1, 3, 224, 224])
B =tensor([1, 3, 228, 228])
C = tensor([64, 3, 3, 3])

D =tensor([1, 64, 112, 112])
E =tensor([1, 16, 224, 224])
F = tensor([1, 19, 224, 224])

Op2: Dilation Conv

D(n, k, p, q] = ReduceAdd({r, s},
B[n, ¢, p*2+r*2, q*2+s*2]
*Clk, c,1,s])

Graph Structure

Op3: Depth2Space
E[n, ¢, h, w] = D[n, c*4+h%2*2+w%2, h//2, w//2]

Op4: Concatenation

F[n, ¢, h, w] = Select(c<3,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Aln, ¢, h, w], E[n, c-3, h, w])
I

Fig. 4. Expression-based representation examples.

declaration, while the second aspect is captured by expres-
sion. In NeoFlow, we use

Blxy,...,on] = Fr_gry .oy}

(Ay[ff (21, ooy TN, 1y ooy L), - - "fll\'h (T1y ey NG Ty ey 7L)],
Ao[fH( 1y oy TN, 1y oy 7L, - - .,fﬁfz(:nl, ey TN Ty ey L) ]
e

Ag[fE (@1, sy, 1, ...,rL),...,fM;K(aﬂl7 ey TN, Ty ey TL)])

o))

to represent the computation within one layer, where B is a
N-dim output tensor of the layer, 4; (1 <i < K) is an
M;-dim input tensor for this layer, and F is calculation oper-
ation (such as ReduceAdd for reduction sum, Select for condi-
tional operation, etc.). R = {ry,...,r.} are index variables
that represent reduction loops (empty if no reduction), and
fi (1 <i<K,1<j<M,)isa function on z1,zy,..., 2y and
r1,...,rr that produces the corresponding access index for
input tensors. In most cases, f]‘f is a (quasi-)affine transfor-
mation of index variables. The expression-based representa-
tion provides great flexibility for defining new operators as
well as graph structures but introduces huge challenges
for high-performance training. First, deep learning frame-
works organize data arrays, gradient calculation, and graph
optimization with respect to operators and define a list of
operators, each with special treatments. However, this
case-by-case design principle can’t handle various arbitrary
expressions. Second, the hand-optimized library such as
CuDNN [10] often follows the fixed computation pattern
such as loop order, data access pattern, etc., and thus fails to
support arbitrary expressions. We address these challenges
in NeoFlow by optimizations based on expressions as illus-
trated in the following sections.

In Fig. 4, we show a graph example using expression-
based representation. The tensor declaration in Fig. 4 shows
the number of elements each layer produces. There are four
operations within the graph, and each operation corre-
sponds to one layer. The four layers include both compute-
intensive and memory-intensive operations. The first layer
(Op1) is padding, whose padding border width is 2. The sec-
ond layer (Op2) is dilation convolution [35], of which the
stride and dilation factors are all 2. For this layer, the F in
Equation 1 is ReduceAdd, and the reduction loops are {c, r, s}.
The third layer (Op3) is depth2space [36]. The last layer
(Op4) is concatenation of two tensors with a shortcut link to
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the input tensor of the graph. This example graph shows the
generality of expression-based representation.

4.2 Expression-Based Autodiff

Gradient calculation is an indispensable part of DNN train-
ing. Deep learning frameworks [7], [8], [9] usually adopt
automatic gradient (autograd) [37] to compute gradients.
For each operator, there exists a gradient operator in the
operator inventory. The autograd algorithm traverses the
DNN graph and finds all the backward paths from loss
function to input tensors. Each path is composed of gradient
operators from the operator inventory. Such an autograd
algorithm requires the gradient operators to be prepared
ahead of time. For new operators that can’t be represented
by existing operators in the inventory, the users must imple-
ment corresponding kernels manually by inferring the gra-
dient formulas and writing low-level code. Although how
to automatically get the gradient formulas for scientific
computing expressions is well known, there still lacks a
good automatic algorithm designed for deep learning
expressions where operands are all tensors and computa-
tions are all deeply nested loops [34]. In NeoFlow, we
develop an automatic differentiation (autodiff) algorithm to
compute the gradients for expressions and whole DNN.
Our gradient algorithm is a hybrid of symbolic gradient
algorithm [34] and autograd algorithm [37]. For expressions,
we use symbolic differentiation, and for the whole DNN, we
use autograd algorithm.

In the following, we focus on the symbolic part of our
algorithm and explain the calculation process in detail. For-
mally, for a given expression in Equation 1, if we want to
calculate gradient to A;, the autodiff algorithm should gen-
erate an expression

dAl [Zg, ey 23”1} = HR’:{T’ oY

1Tp
(dB[gl(zll,...,sz,r’h...,r}),.u,gN(zll,..A,ZM,TIL,...,T'P)],
Al[h,}(zi,...,ziwi,r/l,...,r})),...,h}m(zi,...,szi,r'l,...,r}))],
ceey

A hK i ) / / hK i i / /
kB (2 2 T e Tp)s e By (21 2 s T)]),

2

where dA; is the gradient tensor of A;, dB is the grad-
ient tensor of B, H is the gradient function corresponding
to F, R ={r,...,r»} are reduction axes, g, and h}
1<p<N1<s<K,1<t<M,) are all functions of of
2.2y, and ... ) that produce indices for data
access. The core problem of autodiff is to figure out the
index function g, and 2y (1 <p < N, 1 <s < K, 1<t < M)
and determine the iteration domains of 7/, ..., 7. We point
out that this problem can be solved by linear algebra when
the index functions used in the forward expression (the f]’
in Equation (1)) are (quasi-)affine. Formally, the problem is
expressed as the following linear equation system

fi(m17~-~7xN7T1,...7TL) =z,

ey

i ) _
fMi(.’El,...,l'N,Tl,...,T’L) = ZM;, (3)

where x1,...,xzy and rq,...,r; are considered as unknowns

and z,..., 2y, are considered as constants. If we can solve
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the unknowns in Equation 3, then we can easily substitute
the unknowns in Equation 1 with the solutions and reorga-
nize it to the form of Equation 2. Previous work [34] solves
this problem with a prerequisite that index transformations
are pure affine, that is, the f]‘ is always linear combination
of z1,...,xy and 7,..., 7. This seriously limits the scope
of the operators of the DNNs. Important operators such as
depth2space [36] shown in Fig. 4 are not supported, because
there exist integer division and modular operations, which
are not pure affine.

To address this problem, we substitute all the non-affine
sub-expressions in fi,..., f]‘u/ with new variables so that the
remaining expressions are still pure affine. Then we solve
this linear system and finally take the substituted sub-
expressions back to the results by sepcially resolving quasi-
affine operations such as division and modular. In detail, if
an integer division sub-expression x/V (V is constant) is
substituted by s, to solve this substitution, we first find cor-
responding substitutions for modular sub-expression s, =
2%V because they together can solve z = s; * V + so. If we
can’t find such a pair of division and modular, we then
introduce new free variables as reduction axes, such as z =
s1 * V -+ r where r is a reduction axis. At last, we infer itera-
tion domains for the reduction axes to finish our symbolic
gradient process. With the gradient expressions for all the
forward operators, we can construct the training graph by
autograd algorithm as previous frameworks [7], [8], [9].

4.3 Automatic Model Transformation

Based on the above-proposed representation, we can per-
form automatic model transformations to further improve
model performance at at a high-level. The transformations
we consider include layout transformation, tensor swap-
ping, and parallel fusion.

Layout Transformation. Layout is critical to the perfor-
mance of DNNs for three reasons. First, coalesced data access
can be enabled for proper layout and used to improve mem-
ory access efficiency. Second, memory address calculation
can be reduced through vector loads with regular address
intervals. Third, hardware-specific instructions such as AVX
for CPU and Tensor Core for GPU can be leveraged to gain
additional speedup.

Previous compilers such as TVM require a manual speci-
fication for layout transformation, and only provide limited
choices for layout (e.g., NCHW, NHWC, etc.), which cannot
fully exploit the speedup provided by layout transforma-
tion. Instead of requiring manual specifications, NeoFlow
automatically applies transformation steps to change the
tensor layout and corresponding expressions. To do this,
NeoFlow first performs pattern matching for a vector or
matrix within the expression and then split the matched
dimensions of tensors to produce a packed innermost vector
or matrix. In addition, NeoFlow is able to pack data into a
small vector or matrix with a tunable vector or matrix size
for performance tuning.

In Fig. 5 we show two examples for layout transformation.
In part a) is a convolution expression with NCHW layout.
Code generated from this expression will load input data
and compute output data in the unit of scalar, so data load
and address calculation overhead may slow down the
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a) Original Expression
C[n, k, p, q] = ReduceAdd(
{c, 1, s}, Aln, ¢, p+r, g+s] * B[k, c, 1, s])

C cC A B
BE=E+0X0

b) Match for Vector

C C B
C[n, k1, p, q, k2] = ReduceAdd({c1, c2, r, s}, E m A [mEnn|
A[n, c1, p+r, g+s, c2] * B[k1, c1, 1, s, k2, c2]) E_m [EEEE]
= .+ [HEEER S
c) Match for Matrix B = oTd

C[n, k1, p, q1, k2, 2] = ReduceAdd({c1, c2, r, s},
Aln, c1, p+1[al, s)c2, q2] * BIk1, c1, 1, s, k2, c2])

data replication

C C A B
-l
Fig. 5. Layout transformation examples.

program. In part b), the channel dimension of convolution is
split into two parts and the inner part is moved to the inner-
most dimension. Such layout transformation allows vector
load of tensor A and tensor B and reduces address calcula-
tion overhead. In part c), we show an additional dimension
split for convolution to produce an innermost GEMM com-
putation within the expression. This transformation enables
the usage of Tensor Core instructions but increases data load
overhead because tensor A is replicated s times (s is the ker-
nel width). There is a tradeoff between layout transformation
overhead and the efficiency of special load / compute instruc-
tions. Layout transformation brings additional data transfer
overhead and requires additional fusion steps to achieve
implicit transformation. And the split factors used when
packing data into vector or matrix also influence perfor-
mance. To obtain good performance, NeoFlow will tune the
related factors (vector/matrix size) during code generation.

Tensor Swapping. Layout transformation alone is insuffi-
cient to optimize the program as it can’t change the order of
tensors within an expression. For most DNN models, the
computation within one layer is commutative. For example,
if we swap tensor A and tensor B in Fig. 5, the results
remain unchanged. By changing the order of tensors, we
have the chance to exploit better vectorization acceleration.
For example, for matrix multiplication in DNN models, the
expression is written as Cf[i, j| = ReduceSum({k}, Ali, k] *
B[k, j]), and thus vectorization is applicable to dimension j
for tensor C' and B. But when the j dimension is small and
insufficient to use vector instructions, we can change the
order of tensor A and B and rewrite the expression as
Clj,i] = ReduceSum({k}, B[j, k] * A[k,]) so that dimension
i is exposed for vectorization, which can potentially bring
better performance. In NeoFlow, tensor swapping is
enabled for binary operations such as matrix multiplication.
Whether to apply tensor swapping is also a tunable factor
during code generation.

Parallel Fusion. Parallel fusion [38], [39] is to merge two
operators with no direct data dependency but share at least
one common input tensor as one operator. Parallel fusion
can help to improve parallelism. Using expression-based
representation, we can easily detect such cases. For exam-
ple, two expressions A;[i, k| * As[k, j1] and A, [i, k] « As[k, 5o
can be merged as A;[i, k] * A4[k, j] where Ay is the concate-
nation of A; and A; along the second dimension (called a
fusible dimension) (to get the outputs of original expres-
sions, an additional tensor slice operation should also be
appended). Our parallel fusion algorithm works as follows.
First, for each operator (defined by an expression with out-
put B, so we use B to denote an operator for simplicity), we
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first find fusible operators by enumerating all the operators
that share input tensors with B and check if there is direct
data dependency. If not, we record this fusible operator.
Then, for each fusible operator B; and each dimension x,, of
By, we check if the shape of B, except dimension z, is the
same as that of B, if so, we call z,, a fusible dimension. There
may be many fusible dimensions, but we only take the first
one and fuse B with B; along this dimension.

5 COMPILATION SYSTEM

To generate efficient code for DNN models, NeoFlow
adopts various optimization techniques including fusion
and tuning. For training tasks, fusion and tuning are chal-
lenging because of the non-trivial tradeoff between recom-
putation and data transfer overhead. We first introduce
subgraph partition and fusion and then explain the tuning
of NeoFlow for code generation.

5.1 Subgraph Partition and Fusion

One DNN graph can contain tens or hundreds of operators.
For some large networks such as ShuffleNet [40], there could
be as many as 946 operators. Exploration-based com-
pilers [17], [19] would take hours or days to compile and gen-
erate code for the entire training graph. Therefore, such a
compilation manner will incur prohibitively high overhead
and seriously delay the training process. NeoFlow addresses
this problem by partitioning the original graph into small sub-
graphs and fuse the subgraphs into larger subgraph. Finally,
NeoFlow generates one kernel for each fused subgraph.

To partition the graph, NeoFlow traverses the expression
IR from output to input to capture producer-consumer rela-
tionships for the whole graph. For each edge (tensor)
between two operations, NeoFlow creates a new place-
holder to substitute the original tensor so that the two oper-
ations are separated from each other and form independent
subgraphs. As a result, the whole graph is partitioned into a
list of subgraphs, with each subgraph containing one layer
of operation. The list of subgraphs will then be passed to
the fusion process for further optimization.

To efficiently fuse these subgraphs, NeoFlow needs to
address the tradeoff between recomputation and data trans-
fer overhead. Such a challenge comes from the training sce-
nario and is not revealed in previous fusion frameworks
such as Relay [21] in TVM [17] and TASO [39] because they
only focus on inference tasks. For training tasks, we are
faced with two kinds of computation: forward and back-
ward. Optimizing forward graph and optimizing backward
graph are dual problems. If there exists a tensor in the for-
ward graph, there will be an operation to compute the gra-
dient for this tensor in the backward graph and vice versa.
Moreover, the forward graph and backward graph are con-
nected by lots of intermediate tensors. For example, to cal-
culate the gradient for the weight of a convolution layer, the
original input for this convolution layer is required, which
is probably the intermediate result of previous layers (such
as a ReLU [41] layer or another convolution layer). So if we
fuse two layers in the forward graph and eliminate one
intermediate tensor (reduce data transfer overhead), we
will need to reproduce this tensor for the corresponding
operations in the backward graph that require this
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Fig. 6. Analysis of the results for different subgraph fusion decisions in NeoFlow.

intermediate tensor as input (bring recomputation over-
head). At the same time, the gradient operation for this
eliminated tensor should also be fused because there is no
need to calculate the gradient for this tensor. Such connec-
tions between the forward graph and the backward graph
make fusion for the training task more difficult.

NeoFlow addresses this challenge by analyzing the gains
and costs for each fusion decision. To simplify the problem,
we consider fusing two operations at a time with a single
output. The analysis for multiple outputs is a dual problem,
and we omit the discussion here. We divide operators into
two categories according to the number of inputs (fan-in).
For operators with only one input, we call them One, and
for operators with multiple inputs, we call them Many.
There are four combinations between One and Many, as
listed in Fig. 6. We use T4, T’g, ... to represent the data trans-
fer amount, and use Op;, Ops, ... to represent the amount of
computation. gA is the gradient for tensor A and other ten-
sors are similar. #Kernels shows the number of generated
kernels. By comparing the data transfer amount, computa-
tion amount, and kernel numbers for these cases, we have
the following observations:

1) One + One fusion is always beneficial. We can reduce
4 x Tp data transfer overhead without increasing
any computation. Such a fusion can be applied to
layers such as ReLU [41], Padding, Reshape, etc.

2)  Omne + Many and Many + One fusion decisions are
likely to be profitable because they reduce 4-5 tensor
transfer requirements at the cost of increasing com-
putation for one operation. However, whether such
fusion decisions are profitable should be judged by
precise calculations.

3)  Many + Many fusion (such as convolution + convolu-
tion) increases computation for one forward opera-
tion and one backward operation, and whether the
data transfer amount is reduced is up to the interme-
diate tensor size (if 67 > Tp + Tg, then data trans-
fer amount is reduced). So we still need further
calculation to tell whether this fusion is beneficial.

During compilation, NeoFlow employs a simple reward

function to judge whether a fusion decision is profitable. To
predict the real runtime behavior is hard, but the principle
of reward function is to filter out fusion decisions that are
destined to be of low performance. So the reward function
uses the peak performance to give an optimistic evaluation
for each fusion decision, and if the reward under the opti-
mistic assumption is still negative, NeoFlow can then safely
refuse the fusion plan. We use P; to denote peak data trans-
fer bandwidth between off-chip memory and on-chip mem-
ory, and use P, to denote the peak calculation performance
of the device. We also use L to denote the average kernel
launch overhead. P;, P, and L are device-specific and can
be measured using benchmarks [42]. The reward function is
written as following.

AT AC
==t

= Rl Pc

4)

+AK x L,

where AT is the reduced amount of data transfer, AC' is the
reduced amount of computation, and AK is the number of
eliminated kernel launches. These values can be negative if
the corresponding metric is increased. We show the reward
R for the four fusion decisions in Fig. 6. The reward for One
+ One is always positive, while for other cases, it depends
on the concrete problem size. NeoFlow calculates these
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Fig. 7. Pipeline in the kernel generated by NeoFlow. tb represents
threadblock. wp represents warp. G2R is data load from global to regis-
ter. R2S is data store from register to shared memory. S2R is data load
from shared memory to register mma represents the Tensor Core
instruction.

rewards during compilation and chooses the decision with
the best reward greedily.

5.2 Tuning and Library Generation

In order to provide high-performance, it is necessary to
select good tuning factors within the optimization space
and generate high-performance libraries. NeoFlow explores
several critical optimizations including layout-transforma-
tion factors, swapping factors, tiling factors, unrolling and
pipelining factors, etc. All these optimization schedules
together with their parameters form a large schedule space.
NeoFlow explores the schedule space using a genetic algo-
rithm. It first generates a set of initial parameters and then
evaluates the performance on hardware. According to the
evaluated performance, NeoFlow mutates the parameters
to produce new factors. This process is repeated thousands
of times and finally, a set of good parameters is found. On
GPU, NeoFlow uses TVM to generate CUDA code and uses
NVCC [43] to generate executable binary code. NeoFlow
can also generate LLVM IR [44] to directly generate PTX
code through LLVM backend. In addition, other platforms
can be supported as LLVM supports multiple hardware
devices. To use special instructions such as Tensor Core in
GPU, NeoFlow uses CUDA WMMA instructions to perform
matrix load, calculation, and store. Additional optimiza-
tions on Tensor Core such as register blocking and pipelin-
ing are supported. In detail, NeoFlow loads 1 to 4 fragments
(tunable) within one warp before calculation, and these
fragments are stored in registers. The load and computation
are overlapped by double buffering, which forms a 3-level
pipeline (shown in Fig. 7).

6 RUNTIME SYSTEM

6.1 System Design
The runtime system can use the optimized library generated
by the compilation system in either static or dynamic mode.
Static Mode. In static mode, the subgraphs are compiled
ahead of time and the libraries are invoked at runtime.
However, compiling and generating libraries for the entire
DNN graph usually takes hours or days, but the benefit is
that the generated libraries can be reused in later execution
with no compilation overhead during execution. This mode
is normally useful when the DNN models are stabilized.
Dynamic Mode. In dynamic mode, the subgraphs are com-
piled dynamically to generate the libraries. Our insight is
that we can start training immediately with a moderate
schedule and iteratively improve the schedules as the train-
ing proceeds. The model execution at early iterations also
provides feedback to guide the selection of subgraph and
optimization schedules for later iterations. Based on this
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insight, we develop a runtime that invokes the compilation
incrementally. When the training starts to execute the gener-
ated libraries and update the weight, meanwhile we start
the next round of compilation of subgraphs, overlapping
the compilation and execution.

6.2 Implementation Details

For static mode, we can easily replace the subgraph with the
generated library call. For dynamic mode, we need to miti-
gate the compilation overhead at runtime. The compilation
is further divided into exploration and code generation
parts. We use three threads at runtime, one for exploration,
one for code generation, and one for execution. To commu-
nicate between threads, we use one message queue called
schedule-queue. We also allocate an intermediate buffer
called function-cache to cache the generated code, which is
shared by the code generation thread and execution thread.
The workflow of these three threads is as follows. The
exploration thread explores optimization schedule space
and at the end of each round, it puts the current optimal
schedule into the schedule-queue. The code generation
thread waits for schedules at the schedule-queue, when a
new schedule comes, it generates code according to this
schedule. Each generated code corresponds to a subgraph.
If there is no record for the subgraph in function-cache, the
generated code is immediately saved in function-cache. Oth-
erwise, its performance is compared with the previously
saved code, and only the better one is saved. To get the per-
formance evaluation, the code generation thread runs the
generated code on the target device and collects perfor-
mance numbers. These performance numbers are sent back
to guide the searching for better schedules. As for the execu-
tion thread, it executes the whole graph in order by using
the functions in function-cache.

Fig. 8 presents an example of dynamic mode. In this
example, we have four subgraphs to run, and we split the
exploration for each subgraph into four rounds (each
round contains multiple steps of exploration). Solution 1 is
the static mode that does the four-round exploration in one
shot and generates a library for each subgraph. After all
the libraries are generated, the training can get started in
the end. Solution 2 is an implementation of dynamic mode
without function-cache, we overlap the exploration, code
generation, and training threads (t1, t2, and t3). The optimal
schedules of each round are used for code generation and
training. But they are not stored for later usage, so the
execution thread has to wait for the exploration thread for
new schedules. Solution 3 is our final implementation of
dynamic mode, we improve solution 2 by using function-
cache, so the execution doesn’t wait for exploration except
for the first iteration. For training tasks, the dynamic mode
can efficiently decrease the waiting time. We use multi-
threading to accelerate compilation and evaluation in our
runtime. For GPUs, we also support the usage of CUDA
Graph [45] to further improve performance.

7 EXPERIMENTS

7.1 Experiments Setup

We evaluate NeoFlow using a variety of DNNs. The bench-
marks include both CNNs and RNNs. Some DNNs contain
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Fig. 8. lllustration of different runtime designs. Solution 1 is static mode and solution 3 is dynamic mode in NeoFlow.

new operators, posing challenges to deep learning frame-
works. Among them, CapsuleNet [11], [12], [13] is imple-
mented with two layers of capsule convolutions and three
iterations of dynamic routing [12] between them; Shuffle-
Net [40] contains not only depthwise convolutions but also
channel shuffle operators; MI-LSTM [14], SCRNN [15],
subLSTM [47], and LLTM [48] are variants of LSTM [4]. We
also evaluate common models such as ResNet [2], Mobile-
Net [49], and Bert [5]. All performance experiments are
done on Nvidia Tesla V100 GPU. We compare NeoFlow
with PyTorch [7], TensorFlow [8], CuDNN [10], and
AutoTVM [29]. The setup of our baselines is shown in
Table 1. In the following, we evaluate both training and
inference performance with different batch sizes. All the
networks use FP32 data type except for Tensor Core. On
Tensor Core, we use FP16 data type. Each benchmark takes
about 8-10 hours (around 60-260 rounds) for compilation.
We also discuss the benefit of our runtime in Section 7.3.

7.2 Performance Results

Training Performance. Fig. 9 compares NeoFlow with
PyTorch for the seven models by varying the batch size
from 1 to 64. We also show the performance of ResNet-50.
For batch size 1, NeoFlow is 1.61x the performance of
PyTorch. But for larger batch sizes, NeoFlow cannot exceed
PyTorch because the transposed convolution operator in
backward graph is specially optimized in PyTorch with
implicit GEMM algorithm, which is not implemented in
NeoFlow currently. But for other models that are composed
of new operators, the speedup of NeoFlow is significant.
For CapsuleNet, PyTorch is slow because of the frequent
kernel launch and low device utilization. For ShuffleNet,
NeoFlow can explore deeper fusion such as fusing
ReLU [41] with channel shuffle operator and convolution
layer with batch normalization layer. The depthwise convo-
lution [50] of ShuffleNet is slow in libraries due to poor

TABLE 1
Baseline setup
Name Configuration
PyTorch Version 1.10 with CUDA Graph [45] support.
TensorFlow Version 2.4 with XLA [24]. Eager mode enabled.
CuDNN Version 8.0. CUDA toolkit version is 11.0.
AutoTVM  Version 0.8, with XGBoost [46] tuner.

optimization. But in NeoFlow, the operator is specially opti-
mized by exploring various tiling, binding, and unrolling
schedules. For MI-LSTM, SCRNN, subLSTM, and LLTM,
their computations are variants of LSTM so their PyTorch
implementations have to use multiple steps of GEMM,
addition, and activation to obtain the final results. But in
NeoFlow, we generate an efficient library by fusing the
GEMM and elementwise operations together. Overall, Neo-
Flow achieves a geometric mean speedup of 3.16x for these
DNNs. When the CuDNN is enabled, the speedup to
PyTorch is 1.92x.

Fig. 10 shows the comparison result with TensorFlow.
Similar to PyTorch implementations, we manually imple-
ment baselines by replacing the new operators with multi-
ple existing operators. We show the performance of
TensorFlow with and without XLA. The average speedup
to TensorFlow with XLA is 2.43 x . XLA is a code generation
compiler that generates efficient code for the new models.
But the performance of XLA is inferior to NeoFlow because
XLA can’t tune optimization parameters to gain higher per-
formance. NeoFlow can explore a schedule space to find
better optimization choices during code generation.

Inference Performance With LLVM Backend. We show the
inference performance of NeoFlow in Fig. 11 part a). Spe-
cially, we use LLVM [44] backend in NeoFlow to generate
PTX code. The results show that for batch size 1 and 16,

Cdenhull
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Fig. 9. Training speedup of NeoFlow compared to PyTorch.
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NeoFlow can exceed PyTorch (with CuDNN) and Tensor-
Flow (with XLA). The geometric mean speedup to PyTorch
with CuDNN is 6.72x and the speedup to TensorFlow with
XLA is 4.96x.

Large Model Evaluation. We also evaluate performance
using large models. We show the performance for Bert [5]
encoder in Fig. 11 part b). The decoder of Bert can’t be sup-
ported currently because the decoder has dynamic loops,
but code generation compilers require a static loop struc-
ture. We use Bert-base configuration, which can saturate
V100’s device memory with batch size 1 (batch size 16 will
exceed the memory capacity). According to the results, the
inference and training execution time of NeoFlow is compa-
rable to PyTorch.

Comparison With AutoTVM. We compare with AutoTVM
for inference and show the results in Fig. 11 part o).
AutoTVM requires Relay [21] to handle the graph-level
code generation. Relay’s IR is different from the IR used by
AutoTVM, and the autograd module of Relay is not compat-
ible with AutoTVM. As a result, we can’t obtain the training
performance using AutoTVM. For inference performance,
NeoFlow is comparable with AutoTVM (geometric mean
speedup is 1.08x).

Code Generation With FP16 Tensor Core. On V100 GPU,
NeoFlow can also exploit the FP16 Tensor Core acceleration
by generating CUDA WMMA instructions. We show the
performance of NeoFlow using Tensor Core in Fig. 11 part
d). The geometric mean speedup to PyTorch is 2.31 x.
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7.3 Case Study: MI-LSTM

To evaluate the runtime of NeoFlow, we use the MI-
LSTM [14] benchmark as a case study. MI-LSTM contains a
hundred of subgraphs (35 unique). It replaces the original
equation ¢(Wz + Uz + b) in LSTM [4] with ¢(Wz © Uz + b),
where ® is Hadamard product [14]. Such a new equation is
not well supported in deep learning frameworks but Neo-
Flow can support it using one expression. We use dynamic
mode of runtime to train MI-LSTM and show how dynamic
mode allows training to start early and improves overall
system efficiency.

The results are shown in Fig. 12. We set the batch size to
64 and run the training tasks for 10 hours. The upper part of
Fig. 12 shows the latency of each iteration (int milliseconds).
The blue dashed line is our baseline (PyTorch) and the red
solid line is NeoFlow. The training of NeoFlow starts 3.96
minutes late due to compilation, and the initial latency is
27.791 ms. But after 19.11 minutes, the latency drops to 5.35
ms, which is better than that of PyTorch (5.49ms). The fluc-
tuation in Fig. 12 is caused by the evaluation noise on target
device, but the latency becomes stable after about 1.5 hours.
The dynamic mode allows the users to get the training
started immediately (in minutes) without waiting for the
entire DNN graph compilation to finish (in hours). On the
other hand, we show the number of iterations done as time
goes in the lower half of Fig. 12 (10° iterations as a unit).
PyTorch proceeds at a steady speed while NeoFlow sur-
passes it within the first hour. Although fallen behind at the
beginning, the number of iterations done by NeoFlow
exceeds that of PyTorch after 41 minutes and the final num-
ber of iterations done by NeoFlow within 10 hours is about
2.22x than that of PyTorch.

7.4 Model Transformation Results

NeoFlow uses three important optimizations: layout trans-
formation, tensor swapping, and parallel fusion. We use
2D convolution, GEMM, and capsule convolution to evalu-
ate their effects. For layout transformation, we test a 2D
convolution (feature size 14 x 14, channel size 1024, kernel
size 1 x 1) with different batch sizes. Fig. 13 shows the
effect of layout transformation. By default, we use NCHW
layout, which is always slower than PyTorch when batch
size is larger than 1. NeoFlow automatically transforms the
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convolution to CHWN layout and utilizes vectorization
optimization, leading to 1.25X speedup than PyTorch. For
tensor swapping, we test four GEMM shapes. As shown in
Fig. 13, the z-axis is the shape M x N x K. By swapping
the order of operands, the performance is improved by
20.19% on average. For parallel fusion, we test a capsule
convolution. We deliberately implement it with 8 2D con-
volutions along with tensor concatenation in NeoFlow. We
compare the performance with and without parallel fusion.
The parallel fusion fuses 8 2D convolutions together. With
parallel fusion, we can improve the performance to 9.66X.

8 RELATED WORK

Deep learning frameworks such as PyTorch [7], Tensor-
Flow [8], and MXNet [9] rely on hand-optimized libraries
including CuDNN [10] and MKL [26] to accelerate DNN
inference and training. The libraries are specially opti-
mized for a narrow range of operators, so the frameworks
are restricted to an opaque and inflexible operator inven-
tory, making it hard to accelerate novel operators and net-
work architectures. On the other hand, Deep learning
compilers such as Halide [16], TACO [51], TVM [17], Pla-
diML [18], and Tensor Comprehensions [19] provide high
flexibility for deep learning code generation. They produce
low-level code for customized operators through high-level
expressions and compiler optimizations. Latte [52] and
SWIRL [53] can generate high-performance code on CPU
for inference and training, but they focus on typical layers
such as convolution and pooling, while we focus on novel
models. To get high-performance for DNN operators via
these compilers, Halide autoscheduler [28] uses tree search
and random programs; Chameleon [30] and FlexTensor [31]
proposes to use reinforcement learning methods, while
Ansor [32] uses an evolutionary search algorithm. How-
ever, these optimization frameworks focus on either single
operator or inference scenarios, not applicable to DNN
training acceleration.

Integrating code generation techniques to DNN frame-
works for the acceleration of DNNs has gained more and
more attention. PyTorch [7] and Relay [21] use TVM to
generate code for DNN graphs but are restricted to infer-
ence tasks. Relay provides limited training support and is
still not usable. nGraph [22] takes a model definition writ-
ten in deep learning frameworks (such as TensorFlow)
and generates low-level code via PlaidML. It has no direct
support for novel DNNs due to the rigid interface and
limited operator support. TensorFlow [8] and JAX [23]
use XLA [24] to generate code for training, but the users
can only define DNNs with supported (or traceable)
primitives. To support autodiff for expressions, [33], [54]
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provide expression-based autodiff, but their optimiza-
tions on graph-level are limited.

9 CONCLUSION

Accelerating training for novel DNNs is in great demand
with the rapid development of deep learning. In this
paper, we introduce a flexible framework called NeoFlow
for enabling efficient compilation for high performance
DNN training. NeoFlow supports defintion of a model
directly by expressions and provides expression-based
autoddiff to support training tasks. Experiments for novel
DNNs training on GPU show that NeoFlow can achieve
better performance. The geometric mean speedups to
PyTorch, TensorFlow, and CuDNN are 3.16X, 2.43X, and
1.92X, respectively.
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