
HASCO: Towards Agile HArdware and Software
CO-design for Tensor Computation

Qingcheng Xiao
School of EECS
Peking University

walkershaw@pku.edu.cn

Size Zheng
School of EECS
Peking University

zhengsz@pku.edu.cn

Bingzhe Wu
School of EECS
Peking University

wubingzhe@pku.edu.cn

Pengcheng Xu
School of EECS
Peking University

jsteward@pku.edu.cn

Xuehai Qian
University of Southern California

xuehai.qian@usc.edu

Yun Liang†
School of EECS
Peking University

ericlyun@pku.edu.cn

Abstract—Tensor computations overwhelm traditional general-
purpose computing devices due to the large amounts of data and
operations of the computations. They call for a holistic solution
composed of both hardware acceleration and software mapping.
Hardware/software (HW/SW) co-design optimizes the hardware
and software in concert and produces high-quality solutions.
There are two main challenges in the co-design flow. First,
multiple methods exist to partition tensor computation and have
different impacts on performance and energy efficiency. Besides,
the hardware part must be implemented by the intrinsic functions
of spatial accelerators. It is hard for programmers to identify
and analyze the partitioning methods manually. Second, the
overall design space composed of HW/SW partitioning, hardware
optimization, and software optimization is huge. The design space
needs to be efficiently explored.

To this end, we propose an agile co-design approach
HASCO that provides an efficient HW/SW solution to dense
tensor computation. We use tensor syntax trees as the unified
IR, based on which we develop a two-step approach to identify
partitioning methods. For each method, HASCO explores the
hardware and software design spaces. We propose different
algorithms for the explorations, as they have distinct objectives
and evaluation costs. Concretely, we develop a multi-objective
Bayesian optimization algorithm to explore hardware optimiza-
tion. For software optimization, we use heuristic and Q-learning
algorithms. Experiments demonstrate that HASCO achieves a
1.25X to 1.44X latency reduction through HW/SW co-design
compared with developing the hardware and software separately.

I. INTRODUCTION

Tensor computation is fundamental to many scientific

and engineering applications, such as machine learning [4],

[47], [67], [68], data mining [40], [53], [58], and quantum

chemistry [16], [71]. Tensors are data organized in multi-

dimensional arrays. Common tensor computations include ma-

tricized tensor times Khatri-Rao product (MTTKRP), tensor-

times-matrix (TTM), general matrix multiply (GEMM), gen-

eral matrix-vector multiplication (GEMV), generalized vector

addition (AXPY), and convolution. More importantly, a real-

world tensor application usually has multiple tensor com-

putations, and each tensor computation can have multiple

workloads. For instance, the semantic labeling application [38]

†Corresponding Author

includes dozens of GEMM and 2D convolution workloads that

differ in tensor sizes.

For tensor applications, it is essential to develop a holistic
solution that is a combination of hardware acceleration and

software mapping. The conventional general-purpose proces-

sors suffer from the increasingly high complexity of tensor

computation, which motivates specialized hardware accelera-

tion. Recently, spatial accelerators implemented on FPGAs and

ASICs have been shown to be efficient hardware architectures

for tensor computation due to their massive parallelism and

high energy efficiency [13], [14], [26], [27], [35], [42], [45],

[63], [69]. For instance, Google Cloud TPU [35], [56], an

ASIC processing neural networks, can reduce the training

time by 27X at a 38% lower cost than NVIDIA V100 GPU

clusters. On the other hand, the success of an end-to-end ac-

celeration solution hinges largely on the software mapping or

compilation. For tensor computation accelerators, the software

mapping is responsible for splitting a large tensor into sub-

tensors and invoking the corresponding hardware execution, as

the accelerator can only handle a fixed size of tensor at a time.

Software mapping is crucial for performance optimization.

For instance, compared with manually calling tensor cores of

the V100 GPUs, an optimized software CUTLASS [20] can

achieve up to 1.73X performance improvement.

Though dedicated hardware and software optimizations

have progressed considerably for tensor computation, they

primarily focus on either the hardware part [25], [36], [39],
[62], [81] or the software part [12], [19], [32], [60], [85].

Optimizing the two parts in isolation inevitably suffers from

sub-optimal solutions confined in a local design space. While

seemingly appealing, there has been less attention on hard-

ware/software co-design for tensor computation [2], [7], [72].

This is largely because the design of hardware and software

components influence each other, and the joint design space

can be huge. A general approach to tackle the co-design

problem is to develop a unified intermediate representation

(IR), based on which designers can partition the hardware and

software, optimize, and synthesize the hardware and software.

However, developing such a general IR and synthesizing

arbitrary hardware are challenging [30], [76].

1055

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00086

20
21

 A
C

M
/IE

EE
 4

8t
h

A
nn

ua
l I

nt
er

na
tio

na
l S

ym
po

si
um

 o
n

C
om

pu
te

r A
rc

hi
te

ct
ur

e
(I

SC
A

) |
 9

78
-1

-6
65

4-
33

33
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
52

01
2.

20
21

.0
00

86

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

HW
高亮

In this work, we provide a co-design approach specific to

tensor computation. As tensor computation can be described

using nested loops, we naturally embed loop information

into our IR design for tensor computation partitioning, op-

timization, and implementation. A subset of the loops are

implemented using spatial hardware accelerators, and the

remaining loops are implemented using software programs.

The fundamental questions are: 1) how to define the interface

between the hardware accelerators and the software programs,

2) how to navigate the huge design space for each part.

The accelerator designed for tensor computation typically

supports one or a set of specific functions, which are termed

as hardware intrinsics. For instance, the hardware intrinsic

of Gemmini accelerators [24] is a GEMM function. The

intrinsics of NVDLA accelerators [21] include 2D convolu-

tions, pooling, activation functions, etc. Accordingly, we term

the HW/SW interface for tensor computation as tensorize,

which determines how to divide the tensor computation into

sub-workloads and map the sub-workloads onto hardware

intrinsics. The challenge is that there exist multiple tensorize
choices, which have significant impacts on performance
and energy efficiency. For instance, we can choose differ-

ent loop subsets of a 2D convolution to form GEMV sub-

workloads. Also, we can divide the 2D convolution into

dot product, 1D/2D convolutions, GEMM, and other sub-

workloads, leading to numerous tensorize choices. The sub-

workloads are likely to vary a lot in performance due to dif-

ferent levels of data locality, reuse opportunities, and padding

styles. Thus, designers do not yet have a systematic approach

to select from these choices.

The tensorize interface separates hardware and software so

that each can be optimized separately. However, the hardware

and software design spaces are still huge. Accelerator param-

eters consisting of bandwidth, memory, parallelism, dataflow,

etc., determine the detailed implementation of the intrinsic

functions. Collectively, these parameters form a huge design
space, which cannot be exhaustively searched. For example,

the legal design space of a GEMM accelerator [24] is on the

order of 109. Besides, developers need to prune the design

space for different performance (latency/throughput), power,

and area constraints. On the other hand, software mapping for
various tensor computations requires deep comprehension
of the target accelerator. For instance, loop reordering

changes data locality, which impacts the efficiency of the

memory hierarchy. The factors of loop splitting determine the

size of a sub-workload, which is restricted by the hardware

dataflow and on-chip memory size. Programmers call for

efficient approaches to explore the design spaces.

In this paper, we propose HASCO, an agile co-design

approach for tensor computation. HASCO jointly optimizes

the hardware-software interface, hardware parameters, and

software optimizations. First, we define tensor syntax trees

with loop information and use them as a unified IR for

tensor computation. The tensor syntax trees expose numerous

tensorize choices, which require hardware acceleration with

different hardware intrinsics. Given a hardware intrinsic, we

DRAM

core

bank
bank

scratchpad

Host CPUSpatial Accelerator
controller

instruction decoder
DMAC

L1 cache

PE array

. . .

bank

local memory

cache

Fig. 1: A system overview of spatial accelerators.

explore different tensorize choices using a two-step match-

ing approach. Synthesizing all the possible intrinsics into

hardware is challenging and beyond the scope of this paper.

In practice, we limit the hardware intrinsics to a subset of

commonly used intrinsics (GEMV, GEMM, convolution, and

dot product). Then, we generate holistic solutions for each

tensorize choice and compare them. Concretely, we treat the

hardware exploration as a multi-objective problem, where

performance, power, and area are optimized. We develop a

Bayesian optimization algorithm to find the Pareto set of

hardware parameters. For the software, we use heuristic and

Q-learning searching algorithms to find the optimized software

mapping. The optimization for hardware and software are

inherently correlated. The Bayesian-based hardware optimiza-

tion uses the software latency as the performance metric,

while the heuristic and Q-learning-based software optimization

tailors the software mappings for the hardware parameters.

HASCO mainly targets tensor applications with various

tensor computations and workloads. Through co-design, the

hardware part generates a specialized accelerator (hardware

intrinsic) shared by all the tensor computations of the ap-

plication. The software part retains flexibility by providing

different optimized software mapping onto the accelerator for

each workload. To sum up, our key contributions include:

• We propose HASCO to co-design hardware accelerators

and software mapping in concert. HASCO offers a holistic

solution to tensor computations.

• We propose efficient algorithms to explore the hardware-

software interface (tensorize).

• We develop heuristic, Q-learning, and Bayesian optimiza-

tion algorithms to explore the design spaces efficiently.

The source code of HASCO is publicly available at Github

(https://github.com/pku-liang/HASCO). Experiments demon-

strate that HASCO achieves a 1.25X to 1.44X latency reduc-

tion through HW/SW co-design compared with developing

the hardware and software separately. HASCO speeds up the

hardware design space exploration by 2.5X and achieves a

1.19X hypervolume compared with NSGAII. HASCO also

optimizes the software by 3.17X and 1.21X compared to a

library implementation and AutoTVM, respectively.

1056

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

HW
高亮

II. BACKGROUND AND MOTIVATION

A. Spatial Accelerators
Spatial accelerators [25], [35], [62], [81], [82] have been

successfully employed to accelerate tensor computation. They

expose low-level data transfer and computation through ISAs

and can support multiple dataflows, which are the ways tensors

are distributed and reused [41]. HASCO generates the spatial

accelerators shown in Figure 1, which consist of three basic

components: a 1D/2D array of processing elements (PEs), a

memory system, and a controller. In the PE array, dozens of

PEs communicate via on-chip interconnections between them

and enable massive parallelism. Each PE performs computa-

tions with ALUs and registers. The memory system consists

of a scratchpad memory shared by all the PEs and optional

local memories within PEs. The scratchpad memory can be

partitioned into banks to support concurrent data accesses.

In the controller, there is an instruction decoder and a direct

memory access controller (DMAC). The instruction decoder

fetches and decodes instructions controlling the PEs and the

DMAC. The DMAC moves large chunks of data between the

DRAM and the accelerator’s scratchpad through the off-chip

caches. The data movement between the scratchpad and PEs

is controlled by load/store instructions.
In this paper, we target the spatial accelerators with memory

and control systems specified in Figure 1. Commercial tensor

accelerators could have more complex memory and control

systems. For instance, Google TPU uses dedicated buffers for

weights and results and designs sophisticated synchronization.

We leave the support for such complex designs to future work.

B. HW/SW Interface: Tensorize
Here, we use an example of mapping 2D convolutions to

accelerators with GEMM hardware intrinsics. In Listing 1,

Conv workload 1 and Conv workload 2 are two convolution

workloads (layers) from ResNet [28], and GEMM intrin is the

GEMM hardware intrinsic. A 2D convolution can be expressed

as C[k, x, y] =
∑

A[c, x+r, y+s]∗B[k, c, r, s], where tensor

B is filters, A is input feature maps, and C is output feature

maps. In Conv workload 1, A convolves B with size 64 × 64

× 3 × 3 to produce C with size 64 × 56 × 56. Similarly, the

GEMM intrinsic is expressed as L[i, j] =
∑

M [i, k]∗N [k, j].
The GEMM intrinsic can only process GEMM computa-

tions with a fixed size (16 × 16 here), which is determined

by the PE array shape of the accelerator. Directly calling the

intrinsic function from the host CPU is inefficient, as the

data movement between the host and the accelerator would be

frequent and short. Hence, we need HW/SW interfaces to ten-

sorize computations, transfer data in bursts, and invoke the in-

trinsic multiple times. In Listing 1, Tensorized GEMM 1 and

Tensorized GEMM 2 are the interfaces for Conv workload 1
and Conv workload 2, respectively. They process fixed but

larger GEMM sub-workloads compared with the intrinsic. The

sub-workload sizes are mainly constrained by the scratchpad

size and the burst length of the accelerator.
As we can express a sub-workload as the sub-loops of

tensor computation, we achieve tensorization by loop splitting

Listing 1 Mapping 2D convolutions to GEMM accelerators.Listing 1 Mapping 2D convolutions to GEMM accelerators.

Software
Program

HW/SW
Partitioning

Hardware
Accel.

Intrinsic

1 def Conv_workload_1(A, B, C, ...):
2 for y in range(0, 56):
3 for r in range(0, 3):
4 for s in range(0, 3):
5 for k1 in range(0, 64, 32):
6 for x1 in range(0, 56, 32):
7 for c1 in range(0, 64, 8):
8 Tensorized_GEMM_1(A, B, C, ...)
9

10 def Tensorized_GEMM_1(A, B, C, ...):
11 Tensor sA, sB, sC
12 sA = A[c1:c1+8, x1+r:x1+r+32, y+s]
13 sB = B[k1:k1+32, c1:c1+8, r, s]
14 for k2 in range(0, 32, 16):
15 for x2 in range(0, 32, 16):
16 for c2 in range(0, 8):
17 M = sA[c2, x2:x2+16]
18 N = sB[k2:k2+16, c2]
19 L = GEMM_intrin(M, N, ...)
20 sC[k2:k2+16, x2:x2+16] += L
21 C[k1:k1+32, x1:x1+32, y] += sC
22
23 def Conv_workload_2(A, B, C, ...):
24 ... Tensorized_GEMM_2(A, B, C, ...)
25
26 def Tensorized_GEMM_2(A, B, C, ...):
27 ... L = GEMM_intrin(M, N, ...) ...

and reordering. In Conv workload 1, computation in the k,

x, and c loops form tensorized sub-workloads represented

by Tensorized GEMM 1. The k loop is split into two sub-

loops represented by k1 and k2. Similar splitting is applied

to the x and c loops. After reordering the loops, k2, x2, and

c2 determine the size of the tensorized sub-workloads. The

outer six loops (Line 2-7) form the software program, which

launches the sub-workloads.

In Tensorized GEMM 1, sA, sB, and sC are buffers in

the scratchpad memory. The interface loads a subset of A and

B into the scratchpad memory, performs GEMM computation,

and then stores the result of C back to the DRAM. Specifically,

it distributes the scratchpad buffers to PEs’ local memories or

registers (M , N , and L) and calls the intrinsic (GEMM intrin)

32 times. The k2, x2, and c2 loops determine how the data

are organized and computed. Their order needs to match the

accelerator’s dataflow, and their strides must be identical to

the PE array shape. As will be introduced in Section VI-C,

each interface is a sequence of compute and data movement

instructions executed by the hardware accelerators. In Ten-
sorized GEMM 1, Lines 12, 13, and 21 are load/store in-

structions, and GEMM intrin represents compute instructions.

In short, tensorize interfaces are highly architecture-specific

and must be carefully programmed. Our co-design flow can

automatically infer it once the tensorize choice is made.

C. Motivational Case Study

The hardware parameters and software optimizations are

hard to determine but vital to performance. In this case study,

we prototype two GEMM accelerators (GA_L and GA_S) with

different parameters on FPGAs. GA_L has a 16 × 16 PE array

1057

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

p1 p2 p3

Programs

N
o
rm

al
iz

ed
T

h
ro

u
g
h
p
u
t

GA_L
GA_S

Fig. 2: Normalized throughput when running optimized pro-

grams on the two GEMM accelerators.

and a 256 KB scratchpad memory, while GA_S has an 8 × 8

PE array and a 128 KB scratchpad. We run a set of optimized

programs on both architectures.
Figure 2 gives the results. The X-axis represents different

software programs, and the Y-axis is the throughput normal-

ized by the peak throughput of GA_L. First, we find that soft-
ware optimizations have a huge but unpredictable impact
on the final performance. We highlight three programs, p1 to

p3, in the figure. Programs p1 and p2 have the same amount

of on-chip computation but different loop orders. Program p3
has the same loop order as p1 but more on-chip computation.

As shown, p1 achieves the peak performance for GA_L,

which means loop orders (p2 v.s. p1) and tensorization all

matter, and more on-chip computation does not necessarily

result in higher performance (p3 v.s. p1). Also, p2 instead

of p1 achieves the peak performance on GA_S, which sug-

gests different hardware accelerators prefer different software

optimizations. Second, the design space exhibits complex
trade-offs. GA_L has a 4X larger PE array and a 2X larger

scratchpad memory than GA_S. For our FPGA prototypes,

GA_L consumes 2.58X more area and 1.49X more power

and achieves 4.27X peak throughput improvement (122.33

MOPS v.s. 28.68 MOPS) compared with GA_S. Floor-planned

ASIC designs also demonstrate a complex relation [24]. It is

hard to choose accelerator parameters to meet the constraints

of different scenarios. Also, this example only involves one

hardware intrinsic and one workload. Programmers would

face greater challenges given various tensor computations and

intrinsics. To this end, we propose HASCO to explore the

hardware and software design spaces in concert.

III. HASCO

Figure 3 presents the workflow of HASCO. Users specify the

computation workloads in a tensor application, the hardware

generation method, and constraints in the input description.

HASCO co-designs and outputs solutions for the application.

A holistic solution consists of an accelerator shared by all

the workloads within an application, hardware and software

interfaces, and a software program per workload. We divide a

co-design process into three steps, as shown in Figure 3:
Step 1: HW/SW Partitioning. HASCO first identifies ten-

sorize choices representing HW/SW partitioning from tensor

syntax trees. All these choices form the partition space, which

will be explored with software design space in concert.
Step 2: Solution Generation. HASCO explores different

hardware accelerators and software programs through design

space exploration (DSE). We develop different DSE algo-

rithms, as the hardware and software design spaces differ

in optimization objectives and evaluation costs. The software

DSE is usually performance-driven and can be fast if we fix the

accelerator. The hardware DSE concerns multiple objectives

like power and area in addition to performance. Each point in

the hardware design space represents an accelerator instance.

Evaluating design points may require prototyping accelerators,

which is a lengthy and expensive process.

HASCO explores the hardware design space with a Multi-

objective Bayesian Optimization (MOBO) algorithm and ob-

tains the Pareto optimal accelerator parameters, as introduced

in Section V-B. Based on these parameters, HASCO gen-

erates spatial accelerators with common intrinsics (GEMV,

GEMM, convolution, and dot product) using off-the-shelf

generators [21], [24], [33], [74], [76], [79] or our built-in

Chisel generator. Then, HASCO explores software optimiza-

tions through heuristic and Q-learning algorithms, as detailed

in Section VI. Also, HASCO automatically generates interfaces.

A software program or an interface is specific to a workload

and the accelerator.

Step 3: Solution Tuning. Performance metrics are collected

by running the software on top of the accelerator. If the metrics

violate the user constraints, they will drive the hardware DSE

and generate a new accelerator. Accordingly, the software and

interfaces are also re-generated. HASCO evaluates the metrics

through mathematical models [41], [46], [59], [65], [66] and

runtime profiling.

IV. HW/SW PARTITIONING

A. Tensorize Choices

We define tensorize choices as the ways to decompose a ten-

sor computation into sub-workloads. The sub-workload sizes

are determined by software. Take the GEMM computation (L
= M × N) as an example. Figure 4 gives four tensorize choices.

The first three choices form GEMV sub-workloads. Naturally,

we can treat columns or rows of N as the vectors in GEMVs,

as the #1 and #2 choices illustrate. However, choice #2 is

illegal as it outputs incorrect results. Treating rows of M as the

vectors like choice #3 is also legal if matrix transpositions are

allowed. We can further multiply an element of M and a row of

N to match AXPY, as choice #4 does. These choices differ in

data padding, reuse, and locality. Many other tensorize choices

exist for this simple example. All legal tensorize choices form

the entire partition space. As the tensor dimensions increase,

it is hard for programmers to identify and analyze different

tensorize choices. HASCO provides an automatic approach to

explore the partition space.

B. Partition Space Generation

Here, we first discuss the tensorize choices for a specific

hardware intrinsic. Given a hardware intrinsic and a tensor

computation as inputs, we use a two-step approach to output

all the legal tensorize choices that match the intrinsic. We

define tensor syntax tree (TST) for both hardware intrinsic (in-

trinsic TST) and tensor computation (compute TST). TST that

1058

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

Hardware design space

Off-the-shelf Generators

generate

Software design
space

Generate
metricsparameters

Evaluation

Constraints

Compare

Model Profile Simulate

Input Description
Workloads in an App.:

E[i,j] =
A[i,k,l] * B[l,j] * C[k,j],
. . .

Hardware Generation:
Chisel,

Constraints:
latency: 10 ms,
power: 15 watt

Design Space:
. . .

latency
< 10 ms

Power
< 15 watt

program

split

reorder

fuse

tensorize

Maestro /
Timeloop

Model

M t / Verilator
/ spike

FPGA
prototype

Memory

I/O

PE Array shape

size

speed MOBO

Gemmini
NVDLA
Dsagen

Output
Solution

Interface

Accelerator Software

Simulated
Annealing

+
Q-learning

Step 1: HW/SW
Partitioning

Built-in Chisel Generator

Step 2: Solution Generation

Step 3: Solution Tuning

Fig. 3: The workflow of HASCO.

M

N
N

L

NT

MT LT

M
L

#1 #2 #3

#4

=

=N
illegal

Fig. 4: Four tensorize choices for GEMM. The squares are

data, and the colored ones form GEMVs or AXPY.

abstracts the loop and tensor information serves as the unified

HW/SW IR for tensor computation. In a tensor syntax tree,

each internal node is an operation (e.g., sum, add, multiply,

and indexing), and the children of the node are the operands of

the operator. An internal indexing node ([]) represents a tensor.

Its leaf nodes are the loops accessing the tensor. Figure 5(b)

illustrates the TSTs of the GEMM intrinsic and the 2D

convolution. The intrinsic tree has four leaf nodes representing

the four indexes in the notation
∑

M [i, k] ∗ N [k, j]. The

compute tree has nine leaf nodes corresponding to the indexes

in
∑

A[c, x + r, y + s] ∗ B[k, c, r, s]. The nodes μ3 and μ6

indicate the last dimension of A is accessed by the y and s
loops. TSTs explicitly show the tensor dimensions and loops

involved in an operation.

HASCO lowers both tensor computations and intrinsics into

TSTs and performs a two-step approach: index matching and

structure matching. In the index matching step, HASCO enu-

merates the leaf nodes subsets of the compute tree. Given an

intrinsic tree Q, a potential leaf subset P must: 1© have the

same number of leaf nodes as Q does, 2© ensure a bijective

mapping from each leaf node ν ∈ Q to a node μ ∈ P . For

instance, nodes ν1, ν2 ∈ Q representing index k in Figure 5(b).

If ν1 ↔ μ1 and ν2 ↔ μ2, then μ1, μ2 must represent the

same index (c in this case). In the structure matching step,

HASCO finds the lowest common ancestors (LCAs) of every

two nodes in the subset P to match the internal nodes of

the intrinsic tree Q. In the figure, node μ4 is the LCA of μ3

and μ1. If μ1 ↔ ν1 and μ3 ↔ ν3 are determined in the index

matching step, we require μ4 to represent the same operation

with the LCA of ν1 and ν3 (node ν4 in the figure). Another

mapping μ6 ↔ ν1 that maps index s to k can also pass the

index matching. However, node μ5, the LCA of μ3 and μ6,

and μ4 represent different operations, leading to an illegal

matching.

The two-step matching examines whether the hardware

intrinsic can implement the sub-workload formed by the leaf

subset. It does not restrict the order or range of the matched

leaf nodes and allows more tensorize choices. For instance,

the order of μ1 and μ3 in the compute tree differs from the

order of ν1 and ν3 in the intrinsic tree. Besides, μ1 and μ3 are

from non-adjacent dimensions (the first and last dimensions of

A). Different node orders give different tensorize choices with

data rearrangements, like the matrix transpositions of choice

#3 in Figure 4. In addition, the matching does not decide the

range of each node, such that the size of the sub-workload is

flexible. Given a hardware intrinsic, the time complexity of

the two-step matching is O(Cn
m ∗ l), where n is the number

of leaf nodes of the intrinsic TST, m is the number of leaf

nodes of the compute TST, and l is the total number of nodes

of the compute TST. In practice, l, m, and n are often small

(m ≤ n ≤ 10 and l ≤ 100). For the case in Figure 5(b),

the matching examines 126 leaf subsets and finds six legal

tensorize choices in minutes.

If we allow any form of hardware intrinsic, for a compute

TST with m leaf nodes, its all 2m − 1 leaf nodes subsets are

possible tensorize choices and form the entire partition space.

For instance, the 2D convolution has 511 potential tensorize

choices. However, it is infeasible to explore all the choices

as each requires a specific hardware design, and the explo-

ration will be extremely long. In practice, HASCO uses four

common hardware intrinsics (GEMV, GEMM, convolution,

and dot product) to decompose the workloads. As will be

introduced in Section VI, the partition space of each intrinsic

is included in the software design space. To make tensorize

choices, HASCO generates holistic solutions for each choice

and compares the performance metrics of the solutions.

1059

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

A tensor
computation

A software
program

Generate
SW design

space
Explore & evaluate

*
[]

c + +

x r y s

[]

r sk c

*
[]

i k

[]

k j

split:
y(56)→[y1(4), y2(14)],
x(56), r(3), s(3),
k(64)→[k1(2), k2(32)]
c(64)→[c1(2), c2(32)]

reorder:
x, y1, k1, c1, r, s, y2, k2, c2

fuse:
(x, y1, k1, c1) → outer

tensorize:
y2, k2, c2Intrinsic TST Compute TST

(a) Workflow

(b) The two-step matching (c) Primitive sequence (d) Identify valuable candidates

partition
space

optimization
space

compile

μ1

μ2μ3

μ4

μ5

μ6
ν1 ν2ν3

ν4

candidate
optimization p

(e) Revise candidates

. . .

revise
candidates

a neural network∑ ∑

Identify
tensorize
choices

p’ = Q-learning(p)

Evaluate p by

Initial candidate p

Is top-k ?

start

generate p’

revision choice #1

revision choice #N

Q-values
end

Fig. 5: Schedule a 2D convolution on GEMM accelerators. (a) Software optimization flow. (b) The two-step matching. (c) A

primitive sequence representing an optimization for the convolution. (d) The heuristic algorithm. (e) The Q-learning algorithm.

V. HARDWARE GENERATION

A. Hardware Primitives and Design Space

We provide hardware primitives to define and prune hard-

ware design space. As shown in Figure 6, the primitives

describe three aspects of spatial accelerators: computation par-

allelism (reshapeArray and linkPEs), on-chip cache hierarchy

(addCache, distributeCache, and partitionBanks), and off-chip

memory access (burstTransfer). reshapeArray specifies the PE

array shape and the intrinsic size. Parallel computation relies

on the massive communications between PEs. We abstract

common interconnection patterns and use linkPEs to specify

them. Cache configurations (size, bank number, and distri-

bution) also impact spatial accelerators’ overall performance.

Developers can use addCache to embed a scratchpad memory

shared by all PEs. A scratchpad memory can be partitioned

into multiple banks via partitionBanks to support concurrent

accesses from PEs. It can be further distributed into each PE to

form private local memories through distributeCache. Last, to

speed up off-chip memory accesses, we can use burstTransfer
to define a DMA controller between a cache and the DRAM.

We use a sequence of the parametric hardware primitives to

form the skeleton of a spatial accelerator, and the primitive

factors (accelerator parameters) compose the design space.

Take the accelerator illustrated in Figure 1 as an example.

Its design space is composed of the following parameters:

[scratchpad size, # scratchpad banks, local memory size, burst
length of DMAC, maximal transfer size of DMAC, dataflow,

PE array shape]. Accordingly, the goal of hardware generation

is to determine the factors of the hardware primitives. Listing 2

describes a systolic GEMM accelerator with the primitives. We

first define a design space by specifying the hardware intrinsic

(GEMM). The PE array is set as 16× 16 and interconnected

with a systolic pattern, where PEs receive data from their

upstream neighbors and pass results downstream. The memory

system is a 256 KB scratchpad without local memory. The

DMAC bridges the scratchpad and the DRAM.

The hardware primitives only describe the architecture at

a high level without specifying the underlying hardware im-

plementation. From the primitives, HASCO uses generators to

implement the real hardware. The off-the-shelf generators hide

Listing 2 Describe a systolic GEMM accelerator.

1 acc = createArch(method = "Chisel", intrinsic =
L[i, j]: M[i, k] * N[k , j])↪→

2 # describe the PE array
3 acc.reshapeArray(16, 16)
4 acc.linkPEs("Systolic")
5 # describe the scratchpad and DMA
6 scratchpad = acc.addCache(256 * 1024)
7 acc.burstTransfer(scratchpad, 64, 128)

most architecture details from users and only expose a number

of optimization knobs. HASCO can instantiate the generators

with the determined primitive factors. In addition, we develop

a Chisel [6] generator in HASCO, which translates the four

common intrinsics (GEMV, GEMM, convolution, and dot

product) and the hardware primitives into spatial accelerators.

B. Accelerator Parameter Exploration

Once the design space is defined, HASCO starts to explore

the accelerator parameters and optimize multiple performance

metrics. As the correlations between the parameters and the

metrics are complex, we treat the exploration as a black-box

optimization problem and formulate it as:

y = f(w;x) χ = argmaxx∈X
f(w;x) (1)

where w denotes the target computation workloads, x denotes

the accelerator parameters, and y denotes performance metrics.

X is the hardware design space. f is a collection of objective

functions that characterize the relationship between the accel-

erator parameters x, workloads w, and metrics y. argmax is

to find the parameters x that maximizes y. As performance

metrics of interests can be multi-dimensional, the problem is

a case of multi-objective optimization. Then argmax is to find

the Pareto optimal set χ over different metrics.

To solve Equation 1 and find the Pareto set χ of accelerator

parameters, we develop a multi-objective Bayesian optimiza-

tion (MOBO) algorithm [43], [54], [55] in HASCO. Com-

pared with other black-box optimization methods, Bayesian

optimization attempts to find the global optimum in a few

steps. It incorporates prior information about the objective

function f into a surrogate model, which gives the posterior

distribution of f . Then Bayesian optimization determines the

1060

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

reshapeMesh(x, y) linkPEs(pattern) c = addCache(size) l = distributeCache(c) partitionBanks
(c, num)

Systolic

None

Full

pattern
burstTransfer
(c, len, buswd)

PE
Array

DR
AM

PE
Array

DR
AM c

size

PE
Array

DR
AM c

DR
AM

PE Array

L L

c

c

num

DRAM c

DMA controller
len / buswd

DRAM cCPU

Parallel Computation Memory AccessCache Hierarchy

. . .

x

y

RPE router scratchpad memory L local memory bank data transfer

Organize PEs into a 2D
array with size x×y. The
array becomes 1D if x
or y is 1.

Specify interconnect pattern
for PEs, which can be None,
Systolic, and Full.

Embed a scratchpad
memory c shared by all
PEs. The cache size is
size bytes.

Distribute the memory c
into all PEs, forming local
memory l within each PE.

Partition a memory c
into num banks to
enable concurrent
accesses.

Use a DMAC to transfer data
in the memory c. The burst
length is len bytes. The bus
width is buswd bits.

R R R
RRR

Fig. 6: Main hardware primitives used in HASCO.

Algorithm 1 Pseudo-code for the MOBO Algorithm

Input X, f , w, N , M, ac

1: Init the prior: D ← sample(f , X)
2: for i ← |D| to N do
3: Update the surrogate model M to fit D
4: Calculate the posterior p(y|x,D) with M

5: Acquire a promising xi:
xi ← ac(X, p(y|x,D))

6: Evaluate xi: yi ← f(w;xi)
7: Update the prior: D ← D ∪ (xi, yi)
8: Calculate the Pareto set: χ ← Pareto set of D
9: end for

10: Return the current Pareto set χ

most promising x that maximizes f with the posterior and an

acquisition function. As the optimization proceeds, the prior

information about f and the surrogate model keep updating,

resulting in better posterior distributions and χ.

Algorithm 1 gives the overall procedure of the MOBO

algorithm. It first samples and evaluates design points to build

a training dataset D incorporating prior information (Line 1).

Then it explores the design space iteratively till the maximal

trial number N is reached. At each iteration, it updates the

surrogate model M and computes the posterior distribution

p(y|x,D) (Line 3-4). Based on the surrogate model, it selects

the design point xi with the acquisition function ac and

evaluates xi (Line 5-6). Last, it updates the prior dataset with

the newly explored design point and calculates the Pareto

set χ (Line 7-8). The Pareto set can help us to achieve

better trade-offs among different performance constraints in

changing scenarios. In practice, we use a Gaussian Process

(GP) [64] as the surrogate model and use the hypervolume-

based probability of improvement [5] as the acquisition func-

tion. The GP model explicitly describes the relation between

parameters and metrics is cheap to evaluate.

VI. SOFTWARE AND INTERFACE GENERATION

Figure 5(a) shows the workflow of the software generation.

For each workload, HASCO builds a software design space

with software primitives and explores it using heuristic and Q-

learning methods. HASCO also generates interfaces dedicated

to the target accelerator.

A. Software Primitives and Design Space

We use a set of software primitives, including partitioning

(tensorize), reordering (reorder), splitting (split), fusion (fuse),

etc. Especially, the tensorize primitive uses loops to express

a tensorized sub-workload. All the combinations of these

primitives form a software design space. Formally, a sequence

of software primitives form the skeleton of an optimization,

and by setting the factor of each primitive in the sequence,

we get a concrete optimization. In Figure 5(c), we show

a sequence example of optimizing convolutions for GEMM

accelerators. The primitive sequence is [split, reorder, fuse,

tensorize]. It means we first split the y, k, and c loops into

six sub-loops and interchange all loops in a specified order.

Then we fuse the four outer-most loops into one loop and

specify the three inner-most loops denoted by y2, k2, and c2
as a tensorized sub-workload.

B. Software Optimization and Generation

Finding the optimal software optimization is an open prob-

lem and calls for efficient DSE algorithms. The effect of the

optimizations depends on the memory system and compute

capability of the target accelerator. The reorder, split, and

fuse primitives determine how tensors are accessed in the

DRAM and cached off-chip, which in turn affects the software

latency. The tensorize primitive specifies a sub-workload, and

the sub-tensors processed by the sub-workload are all stored

in the scratchpad. An optimization is valid only if the actual

scratchpad of the target accelerator can accommodate all the

sub-tensors. To guarantee the quality of the exploration results,

we initialize plenty of candidate optimizations before the

exploration starts by randomly generating primitive sequences

and factors. Then, we incrementally revise the candidate

optimizations to generate new candidates. The revision pro-

cess may repeat for hundreds of rounds till we find good

optimizations. The best optimization would be translated into

the final software program by code generation tools [11].

As the exploration proceeds, there can be a great number of

1061

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Benchmark Tensor Computations.

Tensor

Computation
Notation

Work-

loads

Compute

Complexity

MTTKRP
D[i, j] =∑

A[i, k, l] ∗B[l, j] ∗ C[k, j]
10 255M - 5.9G

TTM C[i, j, k] =
∑

A[i, j, l] ∗B[l, k] 10 16M - 8.6G

2D Conv.
C[k, x, y] =∑

A[c, x + r, y + s] ∗B[k, c, r, s]
10 +

CNNs
87M - 3.7G

GEMM L[i, j] =
∑

M [i, k] ∗N [k, j] 10 16K - 4.3G

candidates in hand, making it time-consuming to revise all of

the candidates. Also, to revise each candidate, we have many

choices: change the combination of the primitive sequence or

change one primitive factor. Exhaustively trying out all the

possible revision choices is inefficient.

We determine what and how to revise in two steps. The

first step is to find valuable candidates among all candidate

optimizations, and the next step selects the most promising

revision choice from all possible choices. There are a number

of algorithms for implementing the two steps, such as the ran-

dom algorithm, dynamic programming, and machine learning

algorithms. Especially, the two steps cater to the exploration

and exploitation in reinforcement learning [49], [50], [70],

[87]. Thus, we use a heuristic algorithm and a Q-learning

algorithm to implement the two steps, respectively, as shown in

Figure 5(d) and (e). To identify valuable candidates, we mea-

sure and maintain the latency of each candidate optimization p
as lp, and the lowest latency in history is l∗. Then, the value of

p is measured by exp(−(l∗−lp)/l
∗) [85]. The higher the value

is, the better the candidate is. We choose the top-k candidates

as valuable candidates, where k is a mutable value. To revise
candidates, we use Q-learning to generate a new candidate p′

for a valuable candidate p. In Q-learning, we use a Q-value

to indicate how good each revision choice is. We apply the

revision choice with the highest Q-value to p to generate p′.
Specifically, we use the DQN [51] algorithm to train a 4-layer

fully-connected neural network, which predicts Q-values. The

DQN is reused for all design points in a software space.

C. Interface Generation

Interfaces and intrinsics are only function abstractions and

need to be translated into accelerator instructions. There are

two basic types of instructions: the data movement instructions

move data between the scratchpad memory and the DRAM,

and the compute instructions invoke computations on the PE

array. Such ISAs suggest the tensorize interface should ex-

plicitly manage scratchpad data and call the intrinsic function.

HASCO inserts the data movement instructions before and after

the intrinsic call to prepare the scratchpad. Then it replaces the

intrinsic call with the compute instructions. For instance, the

GEMM intrinsic is replaced with the compute accumulated
instruction of Gemmini, which controls the PE array to per-

form 16 × 16 multiply-add operations.

VII. EXPERIMENTS

A. Experimental Setup

Benchmarks. We use a set of tensor computations as our

benchmarks, as shown in Table I. MTTKRP and TTM are

0.4

0.6

0.8

1

(a) MTTKRP Workloads

N
o
rm

al
iz

ed
T

h
ro

u
g
h
p
u
t

GEMM GEMV

0.4

0.6

0.8

1

1 5 8

(b) 2D Conv. Workloads

DOT CONV2D

0.2
0.4
0.6
0.8
1

a

b

(c) TTM Workloads

N
o
rm

al
iz

ed
T

h
ro

u
g
h
p
u
t

Fig. 7: Normalized throughput results of different tensor

computations and hardware intrinsics.

core computations in tensor decomposition. GEMM and 2D

convolution are used in convolutional neural networks (CNNs).

We also collect workloads from modern CNNs as the 2D

convolutions, including ResNet-50 [28], MobileNet [31], and

Xception [17].

Hardware. In our evaluation, we use four hardware intrin-

sics: DOT (dot product: C =
∑

A[i] ∗ B[i]), GEMV (C[i] =∑
A[i, j] ∗ B[j]), GEMM, and CONV2D (2D convolution).

We employ Gemmini [24] to generate GEMM accelerators.

We use the Rocket Chip generator [3] and our Chisel gen-

erator [33] to build accelerators with the other intrinsics. For

simplicity, we refer to accelerators with GEMM and CONV2D

intrinsics as GEMMCore and ConvCore, respectively.

Methodology. We first analyze different intrinsics and ten-

sorize choices. Then we demonstrate the efficiency of our

hardware DSE with comparisons and detailed analysis. For

the software, we compare HASCO with AutoTVM [12] and

an accelerator library [24]. The library implements hand-tuned

computations, such as matrix multiplication of any size, CNNs,

and non-linear activations. It carefully splits and reorders loops

in the computations and calls the GEMM intrinsic. Last, we

discuss the overall benefits brought by co-design.

Metrics. We use Maestro [41], an open-source accelerator

microarchitectural model, in the hardware DSE evaluation

(Section VII-C). Maestro models spatial accelerators with a

scratchpad, local memories, PEs, and interconnections be-

tween the PEs. It estimates latency, power, and area by ana-

lyzing the reuse across time/space, computations, and memory

transactions. However, Maestro omits the modeling of off-

chip memory systems. Thus, in the remaining experiments,

we synthesize the accelerators with Xilinx Vivado tools [78]

and prototype them as Rocket Chip SoCs on a Xilinx VU9P

FPGA board. We time the latency, calculate the throughput,

and evaluate the chip power with Vivado tools.

B. Tensorize Choice and Hardware Intrinsic

We compare the four hardware intrinsics (DOT, GEMV,

GEMM, and CONV2D) when optimizing the benchmarks’

1062

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

throughput. Concretely, we specify an array of 64 PEs and

a 256 KB scratchpad memory with our hardware primitives

for all accelerators and give them different intrinsic func-

tions. With tensor syntax trees and the two-step matching,

HASCO can divide all the tensor computations into GEMM,

GEMV, and DOT sub-workloads. Only 2D convolutions can

be tiled into CONV2D sub-workloads.

Figure 7 compares the throughput results of the four in-

trinsics. The X-axis represents the workloads of each tensor

computation, and the Y-axis is the normalized throughput. We

draw two conclusions. First, different tensor computations
prefer different hardware intrinsics. In general, an intrinsic

is more efficient if it is dedicated to the tensor computa-

tion. As the figure shows, in most cases, TTM and GEMM

prefer the GEMM intrinsic, and 2D convolution prefers the

CONV2D intrinsic. Dedicated accelerators provide more data

reuse opportunities and achieve higher performance. Although

the DOT intrinsic is the most general, it reuses no tensor data

within a tensorize interface and achieves low performance.

MTTKRP is an exception, which prefers the GEMV intrinsic

instead of GEMM. To illustrate the reason clearly, we treat

MTTKRP as two stages: E[i, k, j] =
∑

A[i, k, l] ∗B[l, j] and

D[i, j] =
∑

E[i, k, j]∗C[k, j]. Only the first A×B stage can

be divided into GEMM sub-workloads and accelerated by the

GEMM intrinsic. Nevertheless, HASCO can find GEMV sub-

workloads in the two stages from tensor syntax trees. In other

words, the GEMM intrinsic accelerates three loops represented

by i/k, l, and j in MTTKRP, while the GEMV intrinsic

benefits four loops represented by i, k, l, and j.

Even though a hardware intrinsic is dedicated to a tensor

computation, the intrinsic does not always achieve the best

performance for the computation. Take 2D convolutions, for

instance. The product of r and s is termed as the filter size in

CNNs. The CONV2D intrinsic processes sub-workloads with

a fixed filter size (3×3 in our experiments). For a convolution

workload, if r × s is not a multiple of the fixed filter size,

the CONV2D intrinsic will conduct redundant computation

and become less efficient. In Figure 7(b), the #1, #5, and

#8 workloads have 5 × 5 and 7 × 7 filter sizes, leading to

30.56% and 39.51% redundant computation, respectively. In

contrast, the GEMM intrinsic computes sub-workloads in a

more fine-grained fashion. By analyzing tensor syntax trees,

HASCO determines that three loops of convolutions match the

GEMM intrinsic: k, x/y, and c/r/s. Regardless of r × s,

the GEMM intrinsic can still exploit the parallelism in the

loop c. As a result, the GEMM intrinsic provides the best

performance to workloads #1, #5, and #8.

Second, different tensorize choices have different im-
pacts on the target metrics (throughput in this case). For

each combination of workloads and intrinsics, HASCO can

find a great number of tensorize choices and explore them

efficiently. In Figure 7(c), we use a colored area to represent

the throughput range of the tensorize choices for the same

intrinsic. Data reuse, locality, and padding all contribute to

the throughput variance. To illustrate the variance clearly, we

mark two tensorize choices a and b in the figure. Choice a

Fig. 8: Correlations between latency, power, and area data

collected with Maestro [41].

divides tensor A in TTM along the last two dimensions j and

l so that the sub-tensor can be accessed continuously in the

DRAM. Choice b divides A along the i and l dimensions,

leading to non-continuous data access. Besides, the interface

of a calls the GEMM intrinsic exactly 64 times, while the

interface of b requires data padding before calling the intrinsic.

As a result, the throughput results of the two choices have a

3.26X difference.

C. Hardware DSE Evaluation

Ground Truth. We first collect metrics of ConvCore ac-

celerators with models as the ground truth data. We limit

the design space of this experiment by simplifying workloads

and accelerator parameters. There are six convolutions from

Xception ranging from 86.7 MOPs to 454.2 MOPs. We only

explore the PE array shape and bank number of the scratchpad

memory. All software programs are generated by HASCO.

Figure 8 illustrates the ground truth data. When designing

accelerators, the correlations between the latency, power, and

area data are non-trivial. Figure 8(c) shows a positive cor-

relation between the normalized power and area data, as a

larger design spends more energy on computations and PE

communications. However, the normalized power and area

can vary dramatically under the same latency constraint, as

Figure 8(a) and (b) show. For instance, the power ranges from

207.46 mW to 25136.7 mW under the 0.05 normalized latency

constraint, leading to a 121.16X difference. Hence, finding

the Pareto solutions to tensor computations is vital to energy-

efficient designs.

We further analyze how the accelerator parameters impact

the performance metrics. Figure 9 illustrates the correlations

between the ground truth data and the parameters. The X-

axis represents the bank numbers ranging from one to eight,

and the Y-axis represents the PE array shape ranging from

4 × 4 to 32 × 32. The color of each point indicates a

normalized latency, power, or area value. As Figure 9(b) and

(c) show, power and area data increase as the PE number

and the bank number increase. This observation is natural

since the PEs and scratchpad consume more energy and areas.

Normally, the latency shows negative correlations with the

PE number and the bank number. As the PEs and banks

become over-provisioned, the contour color would remain the

same. However, in this case, the latency increases when the

generated convolution accelerators have more PEs and banks,

as Figure 9(a) shows. The reason is that the convolutions used

1063

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Pareto solutions of the random search, NSGAII, and MOBO methods. L: latency. P: power.

Workloads &
Constraints

Intrinsic
Latency (×108 cycles) Power (mW) Area(×107 μm2)
Random NSGAII MOBO Random NSGAII MOBO Random NSGAII MOBO

ResNet: L
≤2E9, P≤1E4

GEMM 3.972 3.528 3.528 3293.5 3099.8 3099.8 9.470 7.005 7.005
CONV2D 4.439 3.863 3.411 3298.65 2989.44 2403.87 7.469 6.551 5.438

MobileNet: L
≤ 1E10, P≤1E4

GEMM 30.62 19.23 19.23 4068.14 3874.18 3487.17 19.33 16.86 11.93
CONV2D 21.35 23.35 18.13 3811.98 3589.21 3589.21 13.04 12.29 12.29

Xception: L
≤1E11, P≤1E4

GEMM 228.6 228.6 228.6 4874.48 4355.45 3874.18 27.16 24.25 16.86
CONV2D 237.5 217.7 217.7 4013.59 4456.74 4013.59 17.56 19.43 17.56

NSGA-II Random MOBOGround Truth highlow

Fig. 9: Correlations between the ground truth data and accel-

erator parameters.

0 10 20 30 40
0

0.2
0.4
0.6
0.8

Trial Number

N
o
rm

al
iz

ed
H

y
p
er

v
o
lu

m
e

Random

NSGAII

MOBO

Fig. 10: Normalized hypervolume improvements of random

search, NSGAII, and MOBO.

in this ground truth experiment have small computations and

limited parallelism. Small PE arrays are enough to process

them efficiently. As the PE number keeps growing, the latency

of one intrinsic call also increases. Also, more data are padded

to fill the PE array, leading to wasted computations and an

increase in overall latency.

Comparisons. We compare the MOBO method used in

HASCO with random search and the NSGAII genetic algo-

rithm [22]. We use HASCO to generate software and use the

three methods to optimize the latency, power, and area of

ConvCore simultaneously within 20 trials†. We mark the final

solutions in Figure 9. MOBO can find the Pareto optimal set.

The random search achieves 1.337X latency, 2.283X power,

and 2.404X area compared with the Pareto set. NSGAII

achieves 1.242X latency, 1.05X power, and 1.608X area.

We then use more CNNs and intrinsics (GEMM and

CONV2D) for comparisons. In the evaluations†, we constrain

the latency and power and use the three methods to find

the Pareto solutions. Table II lists the constraints and results.

MOBO always outperforms the random search and NSGAII in

our evaluations. It achieves 1.215X average latency improve-

ment, 1.154X average power reduction, and 1.336X average

area reduction compared with the random search.

We calculate the hypervolume for the case using ResNet and

†MOBO uses five samples as its prior and iterates 15 times.
†The maximal trial number of all methods is set as 40. The population size

of NSGAII is 5. The sample size of MOBO is 10.

the GEMM intrinsic to show the three methods’ convergence.

In multi-objective optimizations, the hypervolume indicator

measures the size of the space dominated by a set of design

points. The closer the design points are to the Pareto front, and

the more likely they are distributed along the Pareto front, the

larger the hypervolume becomes. As Figure 10 shows, MOBO

quickly improves its hypervolume after the initialization phase.

It has surpassed the final results for both the NSGAII and

random search algorithms at trial 16. The reason is that MOBO

reduces the number of redundant evaluations by building

a statistical model based on earlier observations. Notably,

it takes minutes to hours to model, implement, and profile

accelerators per trail. MOBO achieves a 1.19X hypervolume
improvement compared with NSGAII, meaning MOBO finds

more design points close to the Pareto front. It uses 2.5X
fewer trials to achieve the final hypervolume of NSGAII,

significantly reducing the co-design cost.

D. Software DSE Evaluation

We first demonstrate the software quality by comparing

HASCO with the library proposed in [24]. We prototype a

GEMMCore on the FPGA, which has a 16 × 16 PE array and

a 256 KB scratchpad. Then we use the library to run ResNet

on the accelerator. The library converts 2D convolutions to

GEMMs and invokes the GEMM intrinsic. Specifically, it

always unfolds the operand tensors into matrices (im2col),
performs GEMMs, and folds the result matrix back to a

tensor (col2im) [34]. GEMMs converted from convolutions are

divided into sub-workloads by loop splitting. The split factors

depend on the array shape and scratchpad size.

We use HASCO to optimize software for ResNet and the

accelerator. The HASCO-generated software outperforms the

library by more than 2X in 18 cases out of ResNet’s 53

convolution workloads and provides a 3.17X average latency
reduction. We illustrate the first 20 cases in Figure 11. As the

library converts 2D convolutions to GEMMs, the convolution

becomes C[k, x×y] =
∑

A[c× r× s, x×y]∗B[k, c× r× s].
This conversion can be omitted only if the r and s loops

are reduced. It is an algorithm-level optimization beyond

the scope of this paper. Though the conversion is a natural

way to call GEMM intrinsics, it introduces significant la-

tency overheads. As Figure 11 shows, once the im2col and

col2im are performed, their overhead dominates the overall

latency of the workload. Additionally, the conversion requires

a much larger DRAM region to store the intermediate ma-

trices. In contrast, HASCO customizes tensorize interfaces for

each GEMM workload. Instead of converting convolutions to

1064

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

TABLE III: HASCO results when scaling the power constraints. Mem: Memory. Bk: Banks.

Scenario CNNs
Baseline-GEMMCore: separated HASCO-GEMMCore: co-design HASCO-ConvCore: co-design HLS-Core

PEs
Mem
(KB)

Bk
latency
(ms)

PEs
Mem
(KB)

Bk
latency
(ms)

PEs
Mem
(KB)

Bk
latency
(ms)

PEs
latency
(ms)

Edge
(power: 2 W)

ResNet 64 256 4 12321.8 64 256 6 8547.8 144 320 8 4673.7 144 8931.7
MobileNet 64 256 4 56457.6 64 512 8 42977.1 121 512 6 24273.5 121 49828.9
Xception 64 256 4 707105.1 64 512 8 544023.8 144 512 8 318485.6 144 693601.4

Cloud
(power: 20 W)

ResNet 4096 1024 4 260.5 4096 1024 8 197.2 4096 1536 8 195.3 4096 315.4
MobileNet 4096 1024 4 1456.9 4096 1024 8 1020.5 4096 1024 8 901.5 4096 1580.3
Xception 4096 1024 4 15706.3 4096 1024 8 12548.9 4096 1536 8 11594.4 4096 22189.7

5 10 15 20
0

50

100

150 230302
447466472925916

931

461
481

1687

Convolution Workloads

L
at

en
cy

(m
s)

lib compute lib im2col+col2im AutoTVM HASCO

Fig. 11: Comparisons between ResNet software.

GEMMs, it directly partitions a convolution workload along

different dimensions according to operand tensors’ shapes.

For convolutions where dimension c is large, HASCO would

choose c as a partition dimension to provide enough data

parallelism. Otherwise, dimension r/s would be partitioned

to reduce wasted computations as much as possible.

For a fair comparison, we also use AutoTVM [12] to

optimize software by directly partitioning convolutions. Au-

toTVM requires users to manually make tensorize choices and

write primitive templates for each tensor computation. Besides,

it only optimizes the size of tensorized sub-workloads. For

ResNet and the GEMMCore, HASCO outperforms AutoTVM
by 1.21X. The improvement is because HASCO systematically

explores tensorize choices and software primitives, while Au-

toTVM relies on static templates and fixed tensorize choices.

E. Overall Solution Analysis

Last, we evaluate our hardware and software DSE algo-

rithms together and demonstrate the overall benefits brought

by co-design. We scale the power constraints to simulate cloud

(20 W) and edge (2 W) scenarios, respectively. Under the

constraints, we use HASCO to generate GEMMCore accelera-

tors and software in 20 co-design iterations. Table III lists the

accelerator parameters and latency results.

The baseline employs the traditional methodology, which

decouples the hardware and software developments. For the

baseline hardware, we employ two GEMMCore accelerators

with the default parameters listed in Table III. If we use the

library [24] as our baseline software, HASCO can achieve

a 2.14X average latency reduction. For fair comparisons

and improvement breakdowns, we use AutoTVM to generate

the baseline software. As the table shows, HASCO solutions

achieve a 1.25X to 1.44X latency reduction in the two

scenarios compared with the baseline solutions. The hardware

DSE of HASCO provides 29.53% of the latency reduction.

As the table shows, the GEMMCore accelerators generated

by HASCO tend to use more scratchpad memories and banks,

which enable larger tensorized sub-workloads and more data

reuse. For each scenario, the HASCO accelerator uses the same

number of PEs as the baseline. The reason is GEMMCore

constrains its PE array shape to be 2n × 2n. Under this

PE constraint and the power constraint, MOBO converges

to the optimal PE array shape. The software optimization of

HASCO provides the remaining latency reduction.

We then use HASCO to co-design ConvCore accelerators

and the software. The results are also given in Table III.

The HASCO-ConvCore solutions further reduce the latency

by 1.42X on average compared with the HASCO-GEMMCore

solutions. The improvement is two-fold. For one thing, the

CONV2D intrinsic is dedicated to convolutions and provides

more data reuse opportunities than the GEMM intrinsic. For

another, unlike GEMMCore, ConvCore does not restrict the

PE array shape, giving HASCO opportunities to use more PEs

under the same power constraint.

We also compare with HLS-based solutions for convolution

accelerator by using Vivado tools. For an HLS-solution, all

the workloads are synthesized into one hardware, and we

refer to the hardware as HLS-Core. In our implementation of

HLS-Cores, we unroll the c and k loops to provide sufficient

parallelism and synthesize the remaining loops into datapaths.

As Table III (Column HLS-Core) shows, ConvCores achieve

1.615X to 2.181X latency improvements compared with HLS-

Cores. The reason is convolutions in CNNs differ in tensor

sizes and require specialized loop optimization. The datapaths

in HLS-Cores lead to fixed sub-workload sizes and loop

orders, making HLS-Cores only efficient for a small portion

of convolutions. In contrast, HASCO generates an optimized

software for each workload. By orchestrating loop orders and

split factors in the software, HASCO can exploit parallelism

in different loops and form sub-workloads in different sizes.

In this way, the software provides flexibility to ConvCores to

handle different convolutions efficiently. Moreover, for a com-

plicated application using multiple tensor computations [38],

HLS needs to generate hardware for each computation, while

HASCO only generates one hardware.

VIII. RELATED WORKS

Hardware Acceleration. Many hardware accelerators have

been proposed for DNNs and tensor computations. Previous

works [13]–[15], [23], [26], [27], [35], [44], [45], [62], [81]–

[84], [86] target the most common computations in DNNs,

including convolutions and matrix multiplications. Previous

works [25], [29], [42], [57], [63], [69] propose flexible archi-

1065

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

tectures for more general tensor computations. All these works

generate chips with fixed powers and areas and cannot be

scaled across cloud and edge devices. Recently, hardware gen-

erators are proposed to provide more efficiency. Gemmini [24]

generates systolic array accelerators for matrix multiplications.

NVDLA [21] generates deep learning inference accelerators

scaled across a wide range of IoT devices. MAGNet [74] and

AutoDNNchip [79] are generator infrastructures generating

DNN accelerators. MAGNet is based on highly configurable

PEs and supports multiple dataflows. AutoDNNchip instanti-

ates IPs to generate accelerators rapidly. DSAGEN [76] ex-

tracts information about parallelism and concurrency from the

target workload and generates specialized spatial accelerators

from scratch. VTA [52] designs parameterizable architectures,

where memories, datatypes, and sizes of the GEMM intrinsic

can be customized. It relies on AutoTVM [12] to optimize

software, meaning users make tensorize choices. HASCO ex-

ploits off-the-shelf hardware generators.

Design Space Exploration. For software optimizations,

loop transformations [8], [9], [48], [61], [75], [77] have

been studied for decades. The traditional flows use heuristic

algorithms to optimize software. Recently, loop transforma-

tions using machine learning algorithms have been proposed.

Halide auto-scheduler [1] uses tree searching and random

programs in the exploration and mainly targets image pro-

cessing. PlaidML [18] and Tensor Comprehensions [73] use

an analytical model and polyhedral models for software DSE,

respectively. Halide, PlaidML, and Tensor Comprehensions

only support limited heterogeneous hardware platforms. Au-

toTVM [12] uses XGBoost [10] for exploration and supports

more platforms. It requires programmers to develop primi-

tive templates and make tensorize choices. FlexTensor [85]

proposes a fully-automatic method to optimize programs.

However, it only supports general programming platforms.

HASCO targets spatial accelerators with different intrinsics.

Many hardware generators design DSE methods for their

accelerators, such as [74], [76], [79], [80]. For instance,

AutoDNNchip [79] also builds models to predict accelerator

metrics based on DNN parameters. It relies on design space

pruning to enable fast exploration. DSAGEN [76] iteratively

optimizes a single objective until the objective converges.

ConfuciuX [37] uses reinforcement learning and genetic al-

gorithms to search the number of PEs assigned to different

DNN layers. It leverages accelerators in a fine-grained way,

which requires architecture supports. Besides, it optimizes one

objective at a time. Compared with these works, HASCO pro-

vides a multi-objective DSE approach serving a class of

spatial accelerators. Interstellar [80] analyzes the impact of

blocking and different dataflows on the DNN accelerators. It

transforms loops to fit into the resource-constrained hardware

but lacks systematic software optimization. More importantly,

Interstellar cannot reuse the generated accelerators for other

tensor computations as it is unaware of hardware intrinsics. In

contrast, HASCO automatically explores numerous tensorize

choices and jointly optimizes the hardware and software.

The software retains flexibility such that the hardware serves

multiple tensor computations.

IX. CONCLUSION

Though HW/SW co-design can generate high-quality solu-

tions to tensor computation, it faces two fundamental chal-

lenges: identifying substantial partitioning methods and effi-

ciently exploring the huge hardware-software design space.

In this work, we propose HASCO as an agile co-design ap-

proach. HASCO automatically identifies partitioning methods

from tensor syntax trees. It uses heuristic and Q-learning

algorithms for software optimization. It uses multi-objective

Bayesian optimization to explore hardware parameters. Putting

these techniques together, HASCO provides significant im-

provements in solution quality and DSE efficiency.

ACKNOWLEDGMENT

This work is supported by the Beijing Natural Science

Foundation (No. JQ19014), Beijing Academy of Artificial In-

telligence (BAAI), and Key-Area Research and Development

Program of Guangdong Province (No. 2019B010155002).

REFERENCES

[1] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand, and J. Ragan-Kelley,
“Learning to Optimize Halide with Tree Search and Random Programs,”
ACM Trans. Graph., vol. 38, no. 4, Jul. 2019. [Online]. Available:
https://doi.org/10.1145/3306346.3322967

[2] S. Alkalay, H. Angepat, A. Caulfield, E. Chung, O. Firestein, M. Hasel-
man, S. Heil, K. Holohan, M. Humphrey, T. Juhasz et al., “Agile Co-
Design for a Reconfigurable Datacenter,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2016, pp. 15–15.

[3] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
Design, Simulation, and Implementation Framework for Custom SoCs,”
IEEE Micro, 2020.

[4] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Ten-
sor decompositions for learning latent variable models,” The Journal of
Machine Learning Research, 2014.

[5] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Hypervolume-
based multiobjective optimization: Theoretical foundations and practical
implications,” Theoretical Computer Science, vol. 425, pp. 75–103,
2012.

[6] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012.
IEEE, 2012, pp. 1212–1221.

[7] F. Balarin, P. Giusto, A. Jurecska, M. Chiodo, C. Passerone, E. Sen-
tovich, H. Hsieh, L. Lavagno, B. Tabbara, A. Sangiovanni-Vincentelli
et al., Hardware-software co-design of embedded systems: the POLIS
approach. Springer Science & Business Media, 1997.

[8] C. Bastoul, “Code generation in the polyhedral model is easier than
you think,” in Proceedings. 13th International Conference on Parallel
Architecture and Compilation Techniques, 2004. PACT 2004., 2004, pp.
7–16.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2008, pp. 101–113.

[10] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[11] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Yan, L. Wang, Y. Hu, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “TVM: End-to-End Optimization
Stack for Deep Learning,” in SysML Conference, 2018.

1066

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

[12] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, “Learning to optimize tensor programs,” in
Advances in Neural Information Processing Systems, 2018, pp. 3389–
3400.

[13] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, 2014.

[14] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, 2016.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning
supercomputer,” in Proceedings of the International Symposium on
Microarchitecture, 2014.

[16] S. R. Chinnamsetty, M. Espig, B. N. Khoromskij, W. Hackbusch, and
H.-J. Flad, “Tensor product approximation with optimal rank in quantum
chemistry,” The Journal of chemical physics, vol. 127, no. 8, p. 084110,
2007.

[17] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[18] I. Corporation. (2020) PlaidML. [Online]. Available: https://ai.intel.
com/plaidml

[19] N. Corporation. (2020) NVIDIA cuDNN. [Online]. Available: https:
//developer.nvidia.com/cudnn

[20] N. Corporation. (2020) NVIDIA CUTLASS. [Online]. Available:
https://github.com/NVIDIA/cutlass

[21] N. Corporation. (2020) NVIDIA Deep Learning Accelerator (NVDLA).
[Online]. Available: http://nvdla.org/

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[23] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, 2015.

[24] H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright, C. Schmidt,
J. Zhao, A. Ou, M. Banister et al., “Gemmini: An agile systolic array
generator enabling systematic evaluations of deep-learning architec-
tures,” arXiv preprint arXiv:1911.09925, 2019.

[25] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, no. 5, pp. 38–51, 2012.

[26] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
and Y. Wang, “ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA,” in Proceedings of the International Symposium on
Field Programmable Gate Arrays, 2017.

[27] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep neural
network,” in Proceedings of the International Symposium on Computer
Architecture. IEEE, 2016.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Accelerator
for Sparse Tensor Algebra,” in Proceedings of the International Sympo-
sium on Microarchitecture, 2019.

[30] J. Henkel and R. Ernst, “An approach to automated hardware/software
partitioning using a flexible granularity that is driven by high-level esti-
mation techniques,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 9, no. 2, pp. 273–289, 2001.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
CoRR, vol. abs/1704.04861, 2017. [Online]. Available: http://arxiv.org/
abs/1704.04861

[32] Intel Corporation. (2020) Intel MKL-DNN. [Online]. Available:
https://software.intel.com/mkl

[33] L. Jia, Z. Luo, L. Lu, and Y. Liang, “TensorLib: A Spatial Ac-
celerator Generation Framework for Tensor Algebra,” arXiv preprint
arXiv:2104.12339, 2021.

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for

fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675–678.

[35] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a
tensor processing unit,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture, 2017, pp. 1–12.

[36] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-specific
architecture for deep neural networks,” Communications of the ACM,
vol. 61, no. 9, pp. 50–59, 2018.

[37] S.-C. Kao, G. Jeong, and T. Krishna, “ConfuciuX: Autonomous Hard-
ware Resource Assignment for DNN Accelerators using Reinforcement
Learning,” in Proceedings of the 53nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2020. ACM, 2020.

[38] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3128–3137.

[39] D. Y. Kim, J. M. Kim, H. Jang, J. Jeong, and J. W. Lee, “A neural net-
work accelerator for mobile application processors,” IEEE Transactions
on Consumer Electronics, vol. 61, no. 4, pp. 555–563, 2015.

[40] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-
aspect data mining,” in 2008 Eighth IEEE international conference on
data mining. IEEE, 2008, pp. 363–372.

[41] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, “Understanding Reuse, Performance, and Hardware Cost
of DNN Dataflow: A Data-Centric Approach,” in Proceedings of the
International Symposium on Microarchitecture, 2019, pp. 754–768.

[42] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” in ACM SIGPLAN Notices, vol. 53. ACM, 2018, pp. 461–475.

[43] M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms for
multi-objective optimization,” in International Conference on Parallel
Problem Solving from Nature. Springer, 2002, pp. 298–307.

[44] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “Pudiannao: A polyvalent machine learning accelerator,”
in ACM SIGARCH Computer Architecture News, 2015.

[45] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture. IEEE, 2016, pp. 393–405.

[46] L. Lu, N. Guan, Y. Wang, L. Jia, Z. Luo, J. Yin, J. Cong, and
Y. Liang, “TENET: A Framework for Modeling Tensor Dataflow Based
on Relation-centric Notation,” in 2021 ACM/IEEE 48rd Annual Inter-
national Symposium on Computer Architecture, 2021.

[47] M. Mahmoud, I. Edo, A. H. Zadeh, O. M. Awad, G. Pekhimenko,
J. Albericio, and A. Moshovos, “TensorDash: Exploiting Sparsity to
Accelerate Deep Neural Network Training,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE,
2020, pp. 781–795.

[48] K. S. Mckinley, S. Carr, and C. Tseng, “Improving data locality with
loop transformations,” ACM Transactions on Programming Languages
and Systems, vol. 18, no. 4, pp. 424–453, 1996.

[49] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device Placement
Optimization with Reinforcement Learning,” in Proceedings of the
34th International Conference on Machine Learning - Volume 70, ser.
ICML’17. JMLR.org, 2017, p. 2430–2439.

[50] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[51] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski

1067

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[52] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,
Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy, “A Hard-
ware–Software Blueprint for Flexible Deep Learning Specialization,”
IEEE Micro, vol. 39, no. 5, pp. 8–16, 2019.

[53] M. Mørup, “Applications of tensor (multiway array) factorizations and
decompositions in data mining,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 1, no. 1, pp. 24–40, 2011.

[54] L. Nardi, D. Koeplinger, and K. Olukotun, “Practical design space
exploration,” in 2019 IEEE 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems.
IEEE, 2019, pp. 347–358.

[55] L. Nardi, A. Souza, D. Koeplinger, and K. Olukotun, “HyperMapper: a
Practical Design Space Exploration Framework,” in 2019 IEEE 27th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems. IEEE, 2019, pp. 425–426.

[56] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young,
N. P. Jouppi, and D. Patterson, “Google’s Training Chips Revealed:
TPUv2 and TPUv3,” in 2020 IEEE Hot Chips 32 Symposium. IEEE
Computer Society, 2020, pp. 1–70.

[57] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace:
An outer product based sparse matrix multiplication accelerator,” in
Proceedings of the International Symposium on High Performance
Computer Architecture, 2018.

[58] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology,
vol. 8, no. 2, pp. 1–44, 2016.

[59] A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A Systematic Approach to DNN Accelerator Evaluation,” in 2019
IEEE International Symposium on Performance Analysis of Systems and
Software, 2019, pp. 304–315.

[60] A. H. plc. (2020) Arm Compute Library. [Online]. Available:
https://www.arm.com/why-arm/technologies/compute-library

[61] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
P. Sadayappan, and N. Vasilache, “Loop transformations: convexity,
pruning and optimization,” ACM SIGPLAN Notices, vol. 46, no. 1, pp.
549–562, 2011.

[62] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture. IEEE, 2017, pp.
389–402.

[63] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM
Accelerator with Flexible Interconnects for DNN Training,” in Proceed-
ings of the International Symposium on High Performance Computer
Architecture, 2020.

[64] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning. Springer, 2003, pp. 63–71.

[65] Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “Aladdin: A pre-
RTL, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in 2014 ACM/IEEE 41st
International Symposium on Computer Architecture, 2014, pp. 97–108.

[66] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Wei, and D. Brooks, “Co-
designing accelerators and SoC interfaces using gem5-Aladdin,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture,
2016, pp. 1–12.

[67] S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proceedings of the Workshop on Irregular Applica-
tions: Architectures and Algorithms, 2015.

[68] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2015, pp. 61–70.

[69] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor
Computations,” in 2020 IEEE International Symposium on High Per-
formance Computer Architecture. IEEE, 2020, pp. 689–702.

[70] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[71] S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider,
and Ö. Legeza, “Tensor product methods and entanglement optimization
for ab initio quantum chemistry,” International Journal of Quantum
Chemistry, vol. 115, no. 19, pp. 1342–1391, 2015.

[72] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush, D. Brooks,
and G.-Y. Wei, “Algorithm-hardware co-design of adaptive floating-point
encodings for resilient deep learning inference,” in 2020 57th ACM/IEEE
Design Automation Conference. IEEE, 2020, pp. 1–6.

[73] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen. (2018) Tensor Com-
prehensions: Framework-Agnostic High-Performance Machine Learning
Abstractions.

[74] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik,
B. Keller, A. Klinefelter, N. R. Pinckney, P. Raina et al., “MAGNet: A
Modular Accelerator Generator for Neural Networks,” in ICCAD, 2019,
pp. 1–8.

[75] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gomez, C. Tenl-
lado, and F. Catthoor, “Polyhedral parallel code generation for CUDA,”
ACM Transactions on Architecture and Code Optimization, vol. 9, no. 4,
pp. 1–23, 2013.

[76] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki,
“DSAGEN: Synthesizing Programmable Spatial Accelerators,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture. IEEE, 2020, pp. 268–281.

[77] M. E. Wolf, D. E. Maydan, and D.-K. Chen, “Combining loop trans-
formations considering caches and scheduling,” in Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 29. IEEE, 1996, pp. 274–286.

[78] Xilinx.com. (2020) Vivado Design Suite. [Online]. Available: https:
//www.xilinx.com/products/design-tools/vivado.html

[79] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,
D. Chen, and Y. Lin, “AutoDNNchip: An automated dnn chip predictor
and builder for both FPGAs and ASICs,” in The 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020,
pp. 40–50.

[80] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell,
K. Cao, H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar:
Using Halide’s Scheduling Language to Analyze DNN Accelerators,”
in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 369–383. [Online]. Available:
https://doi.org/10.1145/3373376.3378514

[81] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, S. Zheng, T. Lu, J. Gu,
L. Liu, and S. Wei, “A high energy efficient reconfigurable hybrid
neural network processor for deep learning applications,” IEEE Journal
of Solid-State Circuits, vol. 53, no. 4, pp. 968–982, 2017.

[82] S. Yin, P. Ouyang, J. Yang, T. Lu, X. Li, L. Liu, and S. Wei, “An
energy-efficient reconfigurable processor for binary-and ternary-weight
neural networks with flexible data bit width,” IEEE Journal of Solid-
State Circuits, vol. 54, no. 4, pp. 1120–1136, 2018.

[83] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE, 2016, pp. 1–12.

[84] Y. Zhao, Z. Du, Q. Guo, S. Liu, L. Li, Z. Xu, T. Chen, and Y. Chen,
“Cambricon-F: machine learning computers with fractal von neumann
architecture,” in 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture. IEEE, 2019, pp. 788–801.

[85] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “FlexTensor:
An Automatic Schedule Exploration and Optimization Framework for
Tensor Computation on Heterogeneous System,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 859–873.

[86] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-S: Addressing Irregularity in Sparse
Neural Networks through A Cooperative Software/Hardware Approach,”
in The International Symposium on Microarchitecture. IEEE, 2018.

[87] Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. Ma, Q. Xu, H. Liu,
M. Phothilimtha, S. Wang, A. Goldie, A. Mirhoseini, and J. Laudon,
“Transferable graph optimizers for ml compilers,” in NeurIPS, 2020.

1068

Authorized licensed use limited to: Peking University. Downloaded on May 12,2022 at 04:19:14 UTC from IEEE Xplore. Restrictions apply.

		2021-07-31T13:10:38-0400
	Preflight Ticket Signature

