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Abstract—The DNN models are now pervasively used for various
applications. Meanwhile, the computing hardware has shifted towards
heterogeneous system composed of various accelerators. The intertwined
complexity of DNN models and hardware makes it challenging for
mapping DNN models. Existing mapping frameworks suffer from in-
efficiencies due to under utilization of computation and bandwidth
in heterogeneous SoC. In this paper, we propose COMB, a mapping
framework that coordinates the memory and computation and data
transfer overhead of heterogeneous accelerators to achieve latency
improvement and energy efficiency with two optimizations: dataflow
grouping and accelerator mapping. Dataflow grouping maps multiple
independent DNN layers to the same accelerator at the same time to
spatially share the hardware resources; accelerator mapping finds the
optimized placement of the layer groups to accelerators to reduce data
transfer overhead. These two optimizations provide a huge design space
for heterogeneous DNN mapping. To explore the space efficiently, we
present a hybrid scheduling algorithm by combining greedy algorithm
and genetic algorithm. In evaluation, COMB achieves 1.28× and 1.37×
speedup for latency compared to MAGMA and H2H; COMB also reduces
22.7% and 29.2% energy consumption compared to MAGMA and H2H.

Index Terms—Heterogeneous SoC, DNN, Mapping, Genetic Algorithm

I. INTRODUCTION

The advancement in multi-modality and multi-task learning brings
various heterogeneous DNN model architectures that are composed
of multiple different types of computations (e.g., convolution layers,
fully connected layers, and transformer layers) as shown in Fig-
ure 1 part a). The heterogeneous layers prefer different hardware
accelerator designs for high performance [1]–[3]. To provide low
latency and high energy efficiency, various heterogeneous SoC de-
signs [1], [4] have been proposed recently. The heterogeneous SoC
is normally composed of multiple different types of accelerators
that are connected to each other spatially through network-on-
chip (NoC) as shown in Figure 1 part b). The major features of
such heterogeneous SoC can be summarized into two aspects. For
computation, the accelerators in the heterogeneous system employ
different dataflows [2] (e.g., weight-stationary, output-stationary) and
different hardware resources to accelerate different workloads. For
memory, each accelerator occupies a local scratchpad memory to
store a tile of input/output data for computation. The scratchpad is
limited in size and the accelerators have to communicate with each
other to get the required data through NoC. The accelerators that are
close to each other need less delay (NoC hops) for data transmission
compared to those that are farther away from each other.

Mapping heterogeneous DNNs to heterogeneous SoCs is challeng-
ing. It requires the mapping to fully utilize the hardware computation
resources and communication bandwidth to achieve high efficiency.
First, for computation, the DNN accelerators are over-customized
for special layer types and input shapes. Mapping each layer to its
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Fig. 1: Part a): Heterogeneous DNN layers. Part b): Heterogeneous
DNN accelerators. Part c): Imbalance problem in mapping.

most suitable accelerator without consideration of the whole SoC
utilization may cause congestion on certain accelerators and increase
the overall latency. Second, for data transfer overhead, improper
spatial placement of DNN layers may bring heavy data transfer
overhead. In Figure 1 part c), we show examples for such inefficient
mappings. On the left side, it maps too many workloads to accelerator
1 and leaves other accelerators (acc2) idle. On the right side, the
mapping requires a large amount of data transfer along a long path
(from left-top to right-bottom), causing a long data transfer delay.

Existing works [1], [5], [6], [8], [9], [11] only partially address
the heterogeneous DNN mapping problem. PREMA [8] proposes to
use preemptible NPUs and predictive schedulers to map DNNs to a
large systolic array. It improves task latency for only one particular
dataflow and one single accelerator. AI-MT [9] packs compute-
intensive and memory-intensive workloads together to fully utilize
hardware compute and memory resources, but they assume all the
accelerators are homogeneous without consideration of heterogeneous
dataflow. Herald [1] proposes to use heterogeneous dataflows for
heterogeneous DNNs. It prioritizes computation mapping without
modeling the inter-accelerator communication overhead. Recent state-
of-the-art works MAGMA [6] and H2H [5] take data transfer over-
head into consideration and optimize the mapping problem for both
homogeneous and heterogeneous accelerators. However, their map-
pings assume that a single DNN layer is enough to fully utilize the
computation resources of one accelerator and that all the accelerators
can communicate with each other uniformly, which is not accurate
for complex heterogeneous SoCs. As a result, their mappings may



result in sub-optimal performance.
In this paper, we propose COMB, a mapping framework that

coordinates the computation utilization and data transfer overhead
between accelerators to achieve better latency and energy efficiency
for complex heterogeneous SoCs. COMB is equipped with two
optimizations: dataflow grouping and accelerator mapping. Dataflow
grouping can pack two or more independent DNN layers together
into one task and execute them concurrently on one accelerator
to improve computation utilization. The grouping process doesn’t
aim to choose the best dataflow for each DNN layer but aims to
achieve better utilization for the whole SoC. Accelerator mapping
is to choose the optimized placement of layers onto accelerators
so that data transfer overhead between accelerators can be reduced.
Intuitively, layers that have a large amount of data transfer should be
placed in adjacent accelerators to exploit the high bandwidth between
neighbor accelerators. These two optimizations are tightly coupled
with each other and should be applied together in mapping. The
design space is huge and can’t be explored efficiently through brute-
force enumeration. As a result, we combine greedy algorithms with
genetic algorithms to explore the design space. In summary, we make
the following contributions:

1) We formulate the mapping problem for complex heterogeneous
SoCs with consideration of resource utilization and spatial non-
uniform data transfer overhead.

2) We propose two optimizations: dataflow grouping and acceler-
ator mapping to optimize the mapping for heterogeneous SoCs.
We also combine greedy and genetic algorithms to explore the
design space of these two optimizations.

3) We implement a mapping framework COMB for complex
heterogeneous SoCs and achieve better latency and energy
efficiency compared to state-of-the-art works.

In evaluation, COMB achieves 1.28× and 1.37× speedup for
latency compared to MAGMA and H2H; COMB also reduces 22.7%
and 29.2% energy consumption compared to MAGMA and H2H.

II. MOTIVATIONAL EXAMPLE

In this section, we use a simple example in Figure 2 to motivate
our work. For hardware part, we consider a heterogeneous SoC with
three accelerators (acc1, acc2, acc3). They are designed to support
different dataflows. Acc1 supports output stationary dataflow (OS);
acc2 and acc3 support weight stationary dataflow (WS). In the SoC,
acc1 is connected with acc2, and acc2 is connected with acc3. For the
software part, we consider a sub-graph as shown in Figure 2 part a).
The layers (L1-L6) in this sub-graph are heterogeneous and prefer
different dataflows. We show the characteristics of these layers in
the Table in Figure 2 part b). These layers require different units of
hardware resources, which are also shown in the Table.

To map the heterogeneous sub-graph to the heterogeneous SoC,
we show the mapping comparison of existing works [5], [6] (part
c) and COMB (part d) in Figure 2. The mapping in part c) requires
three execution steps and two cross-accelerator data transfers. In the
first step, L1, L2, and L4 are mapped to their preferred accelerators.
At the second step, L3 is mapped to acc1, L5 is mapped to acc2.
The outputs of L2 reside in acc2, so L5 can get the required data
without cross accelerator data transfer. L6 is not mapped because
it relies on the outputs of L3. At the third step, L6 is mapped to
acc2. The outputs of L4 reside in acc3 and the outputs of L3 are
stored in acc1. So we need two data transfer operations for L6. The
computation utilization is low because this mapping fail to share the
same accelerator for independent layers (e.g., L3 and L4).
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Fig. 2: Motivational example.

In Figure 2 part d), we show our mapping for the same example.
In the first step, it maps L3 to a sub-optimal dataflow accelerator
(acc3). Although mapping L3 to acc3 can cause latency increase
and resource usage increase (e.g., resource usage increases from 3
units to 4 units), this mapping enables the concurrent execution of
two layers (L3 and L4) on the same accelerator (acc3) and force
them to use the same dataflow (dataflow grouping). In the second
step, it maps L6 to acc3 so that L6 can use the outputs of L3 and
L4 within the same accelerator, eliminating cross-accelerator data
transfer (accelerator mapping). As a result, both latency and energy
efficiency are improved by our mapping.

In the following sections, we explain how to systematically apply
these two optimizations and find better mappings for heterogeneous
SoCs.

III. PROBLEM FORMULATION IN COMB

In this section, we formulate the scheduling problem for complex
heterogeneous SoCs. Compared to the formulations in previous
works [5], [6], our formulation focuses on the spatial resource sharing
and non-uniform data transfer overhead of heterogeneous SoCs.

A. Graph Representations for DNNs and SoCs

First of all, we introduce the graph representations for hetero-
geneous DNNs and SoCs. The computation of one DNN can be
represented as a directed graph G = (V,E), where V is composed
of all the layers in the DNN, and E is composed of all the
tensors in the DNN (one tensor can be treated as an edge between
producer layer and consumer layer). For heterogeneous DNNs, we
have multiple directed graphs G = (G1, G2, ..., GM ), where M
is the number of DNNs. Similarly, a heterogeneous SoC can be
represented as a directed graph H = (A,Net), where A is the
set of accelerators A = {acc1, acc2, ..., accN}, N is the number of
accelerators; Net = {(acci, accj , cost)|1 ≤ i, j ≤ N} represents
the NoC for accelerators. Each entry in Net records the data transfer
cost between two accelerators. We also define several methods in
Table I to calculate different properties of the multi-DNN graph and
SoC graph.

B. Dataflow Grouping

Based on the graph representations of heterogeneous DNNs and
SoCs, we present the formulation of our first optimization: dataflow
grouping. Each layer in DNN graph G can be deployed to different



TABLE I: Methods to access DNN and SoC properties.

Name Explanation
DNN Related Methods

Pred(L) Get the predecessor layers of layer L ∈ V
DV(L) Data transfer volume for outputs of layer L

GroupOf(L) Get the dataflow group of layer L
SoC Related Methods

NumPE(acc) Get the number of PEs of accelerator acc
MemCap(acc) Get the scratchpad capacity of accelerator acc
Dataflow(acc) Get the dataflow of acceleraotr acc

Comm(acc1, acc2, V ) The cost of transferring data of volume V
from acc1 to acc2 according to Net

accelerators acc ∈ A with different dataflows. However, as shown
in the example in Figure 2, mapping some layers to sub-optimal
dataflows may improve the global utilization, indicating that there
exists a larger design space for dataflow mapping for the whole DNN
graph. Formally, for multi-DNN graph G = (G1, ..., GM ), a dataflow
grouping choice can be represented as an ordered list of layer groups:

D1 � D2 � · · · � DK where Di = {Li
1, L

i
2, . . . L

i
Pi
}

Di ∩Di′ = ∅ ∀i 6= i′, (D1 ∪ ... ∪DK) = (V1 ∪ ... ∪ VM )

Li
j ∈ (V1 ∪ ... ∪ VM ) 1 ≤ i ≤ K, 1 ≤ j ≤ Pi

(1)

Di represents a group of layers. The notation Di � Dj indicates
that all the layers in Di don’t depend on the results of any layer
in Dj . But Dj may depend on some layers in Di. So the group of
layers Di can be executed no later than Dj . Pi is the number of
layers in Di. All the layers in one group Di are to be mapped to
the same accelerator with the same dataflow and they are expected
to spatially share the hardware resources of the same accelerator.

For a multi-DNN graph G, there exist different dataflow grouping
choices and the design space is huge (in the worst case, the space size
is of O(X!), where X is the total number of layers in G). In Figure 3
we show an example of mapping a multi-graph to heterogeneous SoC
and also show two different choices of dataflow grouping in part b).
Each box in part b) represents a layer group. Even for the small
multi-graph in part a), there exist various different grouping choices.
Selecting the optimal one is hard and can’t be solved through brute-
force enumeration.

C. Accelerator Mapping

For a given dataflow grouping choice, we need to map the differ-
ent groups to different accelerators. The formulation of accelerator
mapping is as follows

Map : {D1, D2, ..., DK} → A

Time : {D1, D2, ..., DK} → R
(2)

where Di is one layer group after dataflow grouping, A is the set of
accelerators,R is real number domain. The function Map determines
the mapping from one group to one accelerator. Map(Di) = acc
means that group Di is executed on accelerator acc. The second
function T ime determines the start time of the execution of one
group. T ime(Di) = t means group Di starts to execute at time t.

Not all the mappings are valid because of two constraints. First,
resource constraint: all the groups should make sure not to exceed
hardware resource limits. Second, order constraint: the groups
have execution order as shown in Equation 1, which should be
followed in mapping. For resource constraint, we can get the resource
requirements (PE usage and memory usage) of a mapping through

off-the-shelf evaluation model such as Maestro [2] and TENET [10].
As a result, we can formulate the resource constraint for Di as follows

∑
j

PEUsage(Li
j ,Dataflow(Map(Di))) ≤ NumPE(Map(Di))∑

j

MemUsage(Li
j ,Dataflow(Map(Di))) ≤ MemCap(Map(Di))

(3)

where the PEUsage and MemUsage functions are provided by hard-
ware models (Maestro). For order constraint, we need to make sure
each group is not executed before other groups that it depends on,
which can be formulated as follows

T ime(Dj) ≥ T ime(Di) + Cost(Di), ∀Di � Dj and Dj � Di (4)

where Cost(Di) is the total runtime cost of communication and
computation. The cost can be calculated as follows

Cost(Di) = CompCost(Di) + CommCost(Di)

CommCost(Di) =
∑

Li
j∈Di

∑
L′∈Pred(Li

j)

Funci(L′)

Funci(L′) = Comm(Map(GroupOf(L′)),Map(Di),DV(L′))

(5)

The CompCost function is provided by hardware models. The
explanations of functions Comm, GroupOf, and DV are shown in
Table I. In Figure 3 part c) we show two possible accelerator mapping
choices for a given grouping choice in part b). Different accelerator
mapping choices can result in different data transfer overhead. For
this example, the left one needs 5 NoC hops for data transfer, while
the right one only needs 3 hops. To choose the optimal mapping is
hard and the design space is also huge (O(KN ), K is number of
groups, N is number of accelerators).

D. Mapping Problem Formulation

Based on our formulation of dataflow grouping and accelerator
mapping, we formulate the problem of mapping heterogeneous DNNs
to heterogeneous SoC as follows

min
D1�...�DK ,Map,T ime

max
i
{T ime(Di) + Cost(Di)}

s.t. Constraints in Equation 3 and Equation 5 hold
(6)

The maximum end time each group Di, which is calculated by
maxi T ime(Di) + Cost(Di), represents the end-to-end execution
time of the multi-graph G. So minimizing the maximum end time is
equivalent to minimizing the end-to-end latency. Other metrics such
as throughput and energy consumption can also be considered based
on our formulation of dataflow grouping and accelerator mapping.

IV. SCHEDULING ALGORITHM OF COMB

In this section, we present our scheduling algorithm. As explained
in Section III, the design space for dataflow grouping and accelerator
mapping is extremely huge and can’t be explored through brute-
force enumeration. We find that the optimization process of dataflow
grouping can be formulated as a genetic algorithm and the accelerator
mapping can be effectively solved by a greedy algorithm. Moreover,
these two optimizations should be done jointly to get an optimized
mapping. As a result, our scheduling algorithm is a hybrid of genetic
algorithm and greedy algorithm.



Fig. 3: Examples to explain dataflow grouping and accelerator mapping in detail. Part d) and e) show how our genetic algorithm generates
new grouping choices.

Algorithm 1: Skeleton of COMB Scheduling Algorithm
input : Multi-DNN graph G, SoC graph H = (A,B)
input : hyperparam K, mutation ratio r, iteration steps NumIter
output: Optimized mapping map

1 opt lat = inf; map = None;
2 population = RandGenGrouping(G);
3 score board = EmptyDict();
4 for iter in range(NumIter) do
5 for group choice in population do
6 mapping = GreedyAccMapping(group choice, H);
7 latency = Fitness(mapping);
8 score board[group choice] = (mapping, latency);
9 if latency < opt lat then

10 opt lat = latency; map = mapping;

11 topk = score board.topk(K); population.clear();
12 for father in topk do
13 if rand() < r then
14 population.add(Mutate(father, G));

15 for mother in topk do
16 population.add(Crossover(father, mother, G));

17 return map;

A. The Skeleton of the Algorithm

In this part, we show the skeleton of our scheduling algorithm and
the detailed parts of the algorithm will be explained in later sections.
The skeleton is shown in Algorithm 1. In the genetic algorithm, the
genome is a dataflow grouping choice D1 � D2 � ... � DK .
The group Di is the gene in this genome. The algorithm randomly
generates the initial population at line 2, which is a set of randomly
generated grouping choices. Then, from line 4, the algorithm begins
to iterate on the population by continuously mutating (use Mutate
function at line 14) or crossovering (use Crossover function at line
16) the genomes in the population. The good genomes are selected
by using the Fitness function (at line 7), which evaluates the latency
of the mapping that is produced according to a genome (grouping
choice). To get the mapping, we need to decide the accelerator
mapping using GreedyAccMapping function at line 6. After several
steps (usually 10 steps are enough) of iterations, the final optimized
mapping will be returned by this algorithm. In the following sections,
we will explain the functions GreedyAccMapping, Fitness, Mutate,
and Crossover.

B. Greedy Accelerator Mapping

The greedy algorithm that selects accelerator mapping choices is
shown in Algorithm 2. Given a group choice D1 � ... � DK ,
the algorithm iterates over each group Di and greedily selects the
best accelerator for it by minimizing the end time of all the layer
groups before Di. To do this, the algorithm evaluates end time of
the execution of all the layers in Di by querying the end time of
the layer’s predecessor layers (line 10-14) and the execution time
of the target accelerator (at line 9). Then, the algorithm selects the
largest end time of the layers as the end time of Di (line 15) because
Di has to wait all its previous layers. From line 16 to 19, the
algorithm records the minimal possible ending time for Di. This
greedy algorithm follows all the constraints in Equation 5. So the
generated mapping is always valid.

C. Explanation about Other Functions

Fitness Function is used by the genetic algorithm to judge the
quality of a genome. Our fitness function first checks if a mapping
conforms to the resource constraints in Equation 3. If the mapping
violates the constraints, the quality is inf (the lowest quality). Other-
wise, the quality is the end-to-end latency. The latency is measured
on the SoC with hardware evaluators.

Mutate Function is used to generate a new genome (grouping
choice) from an existing genome. In Figure 3 part d) we show an
example of Mutate Function. In detail, a parent grouping choice is
analyzed and part of its groups (genes) are fixed, which will be passed
to its child grouping choice. Other groups that are not fixed will be re-
grouped randomly (produce new genes). In mutation, we choose the
groups that have high PE utilization (fully utilize hardware resources)
to be fixed.

Crossover Function is used to generate a new genome by selecting
good genes from two existing genomes. In Figure 3 part e) we show
an example of crossover. Part of the groups from father grouping
choice and mother grouping choice are passed to the child grouping
choice without modification. But the groups from father and mother
may have conflicts with each other because they overlap with each
other and thus they can’t coexist in the child grouping choice.
For such cases, we randomly reserve the group from either father
or mother, and the remaining ungrouped layers will be re-grouped
randomly to produce new genes in the child grouping choice.



Algorithm 2: Greedy Accelerator Mapping Algorithm
input : Dataflow grouping choice group = [D1, D2, ..., DK ], SoC

graph H = (A,B)
output: Datapath selection results (Map, Time)

1 num groups = group.size(); num acc = A.size();
2 Map = Dict(); Time = Dict(); AccTable = Dict();
3 for Di in group do
4 Map[Di] = None; Time[Di] = inf;
5 for acc in A do
6 end timeDi

= 0;
7 for Layer Li

j in Di do
8 start time = AccTable[acc];
9 comp time = HWModel(Li

j );
10 for Layer L′ in Pred(Li

j ) do
11 D′ = GroupOf(L′);
12 end timeD′ = Time[D′]; accD′ = Map[D′];
13 start time = max(start time, end timeD′ +

Comm(accD′ , acc, DV(L′)));

14 end time = start time + comp time;
15 end timeDi

= max(end timeDi
, end time);

16 if end timeDi
< Time[Di] then

17 Time[Di] = end timeDi
;

18 Map[Di] = acc;

19 AccTable[Map[Di]] = Time[Di];

20 return Map, Time;
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Fig. 4: Connection of the SoCs in evaluation.

V. EVALUATION

A. Evaluation Setup

Workloads: we follow the workloads selection in previous
work [1], [6], [8]. We use three types of heterogeneous DNN
workloads: Vision (ResNet-50, MobileNet-V2, GoogleNet, Language
(Albert, Bert-Base, LSTM), Mixed (Yolo-V5 , GoogleNet, Bert-Base,
LSTM, MobileNet-V2). By changing the number of networks in each
type, we get totally of six different workloads as shown in Table II.

SoC Configuration: we use the simulator from H2H [5] to
simulate full SoC performance and use the hardware model Mae-
stro [2] to evaluate the latency and energy consumption for each
accelerator. We consider three different accelerators in the SoC:
NVDLA, ShiDianNao [13], and TPU [14] (each accelerator has
128 × 128 PEs). We prepare two SoC configurations as shown
in Table II. The small SoC contains two NVDLA instances, one
ShiDianNao instance, and one TPU instance; the large SoC contains
four NVDLA instances, two ShiDianNao instances, and two TPU
instances. The NoC connections of the two configurations are shown
in Figure 4. The frequency of all the accelerators is 200 MHz. We use
two network bandwidth configurations for NoC: Low-BW (0.8GB/s)
and High-BW (3.2GB/s).

Baseline: we compare to H2H [5] and MAGMA [6] in evaluation.
H2H uses a dynamic programming algorithm to optimize commu-
nication in mapping. MAGMA uses a genetic algorithm for design
space exploration. They both only consider mapping one layer/job to
one accelerator at a time without consideration for spatial resource
sharing. They don’t consider the non-uniform data transfer overhead
of NoC and assume all the accelerators can communicate with each
other uniformly.

TABLE II: Setup of Workloads and SoC.

Heterogeneous DNN Workloads
Vision-Light 2 ResNet-50, 2 MobileNet-V2, 2 GoogleNet
Vision-Heavy 8 ResNet-50, 8 MobileNet-V2, 8 GoogleNet

Language 2 Albert, 2 Bert-Base, 4 LSTM

Mixed-Light 2 Yolo-V5, 2 GoogleNet, 2 Bert-Base
2 LSTM, 2 MobileNet-V2

Mixed-Mid 4 Yolo-V5, 4 GoogleNet, 4 Bert-Base
2 LSTM, 4 MobileNet-V2

Mixed-Heavy 8 Yolo-V5, 8 GoogleNet, 8 Bert-Base
2 LSTM, 8 MobileNet-V2

Heterogeneous SoC Configs
Small 2 NVDLA, 1 ShiDianNao, 1 TPU
Large 4 NVDLA, 2 ShiDianNao, 2 TPU

B. Overall Latency and Energy Results

For all the workloads and SoC configurations, we evaluate the
latency and energy consumption of H2H, MAGMA, and COMB and
show the results in Figure 5. As the results shown, COMB achieves
the best latency for all the cases, reducing from 7.6% to 47.9%
latency compared to H2H (0.4% to 45.7% compared to MAGMA)
for all the cases. For small SoC and Low-BW, the speedup to H2H
ranges from 1.23× to 1.91×; the speedup to MAGMA ranges from
1.21× to 1.84×. For Large-SoC and Low-BW, the geometric speedup
to H2H is 1.38× and the geometric speedup to MAGMA is 1.28×.
The results of High-BW are similar, which shows the scalability and
generality of COMB. Overall geometric speedup to H2H is 1.37×
and speedup to MAGMA is 1.28×. Our scheduling algorithm in
COMB can automatically adapt to different accelerator configurations
and topology without manual interference.

As for energy consumption, COMB uniformly achieves the min-
imal energy consumption for all the cases. Overall, COMB can
reduce from 12.3% to 46.5% energy consumption compared H2H
(1.9% to 46.3% compared to MAGMA). Overall, COMB can reduce
29.2% energy compared to H2H (22.7% compared to MAGMA). The
reasons are two folds. First, COMB can group more layers together
to share the spatial resources to reduce the number of idle PEs (idle
PEs also consume energy). Second, COMB reduces the delay of data
transfer and thus reduces the energy consumption of communication.

C. Efficiency of Dataflow Grouping

To show the effectiveness of COMB’s dataflow grouping opti-
mization, we show the detailed accelerator utilization (calculated by
dividing the PE busy time by total execution time) in Figure 6a.
We use Large SoC and High-BW and the workload is Mixed-Heavy.
Overall, COMB achieves better utilization for all the accelerators
(the number after accelerator name is the position in the mesh SoC).
The utilization of COMB is 1.28× to that of H2H and MAGMA
on average. ShiDianNao’s utilization is low because only depthwise
convolutions are mapped to ShiDianNao in our SoC.

To show the efficiency of COMB’s genetic algorithm, we show
the performance of the steps of genetic searching in Figure 6b. As
the results show, COMB can quickly optimize the latency by finding
better dataflow grouping choices in several steps (usually 10 steps),
demonstrating the efficiency of the genetic algorithm.

D. Efficiency of Accelerator Mapping

To show the efficiency of COMB’s accelerator mapping algorithm,
we prepare another version of COMB without our greedy accelerator
mapping algorithm and use a round-robin mapping algorithm instead
(called COMB-RR). We compare the performance of the two versions
of COMB and show the results in Figure 6c. The results show that our
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Fig. 5: End-to-end latency (the unit is second) and energy consumption (the unit is nJ) evaluation results.
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(a) Hardware utilization comparison of COMB,
H2H, and MAGMA. The workload is Mixed-Heavy.
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(b) The achieved latency performance of the search
steps of COMB’s genetic algorithm.
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(c) Latency comparison of COMB-RR (round-robin
accelerator mapping) and COMB.

Fig. 6: Detailed performance analysis of COMB. We use Large-SoC and High-BW.

greedy accelerator mapping algorithm can provide 1.72× speedup in
latency on average, demonstrating the efficiency of our algorithm.

VI. CONCLUSION

Deploying heterogeneous DNNs to heterogeneous SoCs is chal-
lenging because of the intractable design space and complex mapping
decisions. Existing mapping frameworks suffer from inefficiencies
for lack of awareness of the computation and data transfer imbalance
problem. In this paper, we propose COMB to use a hybrid algorithm
based on greedy algorithm and genetic algorithm to efficiently explore
the space with dataflow grouping and accelerator mapping to improve
the mapping performance. In evaluation, COMB achieves 1.28× and
1.37× speedup for latency compared to MAGMA and H2H.
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