
ARES: A Mapping Framework of DNNs towards
Diverse PIMs with General Abstractions

Xiuping Cui1, Size Zheng1, Tianyu Jia1, Le Ye1, and Yun Liang1,2,*

1Peking University, Beijing, China
2Beijing Advanced Innovation Center for Integrated Circuits

{cuixiuping, zhengsz, tianyuj, yele, ericlyun}@pku.edu.cn

Abstract—Numerous architectures based on processing-in-
memory (PIM) have recently emerged, exhibiting diversity in
memory types, compute functions, memory mapping constraints,
etc. To effectively utilize PIM hardware for deploying deep
neural networks (DNNs), programmers face the challenge of
mapping computations and data across multiple memory arrays,
scheduling computation and data transfers, while adhering to
various hardware constraints. Existing mapping approaches,
however, are tailored to specific architectures and lack a general
formulation for mapping optimization, limiting their applicability
and performance.

In this paper, we present ARES, a comprehensive mapping
framework designed for diverse PIM architectures. The core
of the framework is hardware abstractions for PIMs, which
is inspired by the fact that DNNs on PIM hardware can be
represented by a tensorized compute function and data layout
constraints in the memory array. This abstraction forms the
basis for constructing a mapping space that encompasses both
compute and memory constraints. Through exploration of this
mapping space, we derive efficient mapping strategies tailored to
different PIM hardware configurations. Experimental evaluation
conducted on four distinct hardware architectures demonstrates
that compared to state-of-the-art mapping methods, ARES yields
up to a 70% speed improvement for single operator mapping and
a 50% speedup for overall network mapping.

I. INTRODUCTION

Recently, in-memory computing has emerged as a promising

solution to address the memory wall problem. The placement

of compute logic next to the memory array or its implemen-

tation inside the memory array can significantly reduce the

demand for data transfer. Meanwhile, due to the rapid increase

in computation demand, various Processing-In-Memory (PIM)

architectures have been proposed to accelerate DNNs and

reduce power consumption. For example, ReRAM-based PIM

architectures, such as PUMA[1] and ISAAC[2] , as well as

SRAM-based architectures such as Neural Cache[3] and Conv-

RAM[4], employ the memory array itself as a computational

array to perform the computation. By storing the weight and

activation data of DNNs in the memory array, the latency

and power consumption caused by off-chip data access can

be reduced.

Based on the types of compute functions supported by

PIM and the constraints of their data mapping, PIM hardware

can be categorized into three types: Logic-based Processing

* Corresponding author

Using Memory (PUM)[3], [5], Matrix-vector-multiplication-

based (MVM-based) PUM[2], [1], [6], and Processing Near

Memory (PNM)[7], [8]. Logic-based PUM treats the memory

array as bulk bit-wise logic operation units, requiring strict

column alignment for the operands. MVM-based PUM treats

the array as a module for matrix-vector multiplication, where

the rows and columns of the matrix correspond to the columns

and rows in memory, respectively. PNM’s compute functions

are carried out by additional computation units such as re-

duction trees and SIMD processing units (PUs). The memory

mapping requirements for these functions are more relaxed,

without the need for strict row-column alignment in memory.

To map a deep neural network (DNN) onto a PIM acceler-

ator, it is necessary to represent the computations of DNN

operators with hardware compute functions and determine

data layout within the memory array. Mapping is highly

challenging for two main reasons. Firstly, there are numerous

mapping approaches available. For example, when mapping a

2D convolution operator with 7 loops to a ReRAM array to

perform matrix-vector multiplication using only inner product

mode, there are 56 different mapping schemes. Secondly,

computation and data mapping are tightly coupled in PIM

hardware. Although two arrays can use the same compute

function, their mapping rules can be different. As a result,

both the shape and layout of the data in the mapping are

different. For instance, we can map matrix-vector multiplica-

tion (MVM) to both MVM-based PIMs and logic-based PIMs.

When mapping MVM to MVM-based hardware, the rows of

the matrix are mapped to the columns of the crossbar, and the

columns of the matrix are mapped to the rows of the crossbar.

On the other hand, when mapping it to logic-based PUMs,

the matrix data can be unfolded and placed in a single row

of memory, intermediate results can be obtained through bulk

multiplication operations, and then the intermediate results can

be transferred and reduced between columns.

Prior mapping solutions[1], [3] adopt template-based map-

ping and are limited in terms of both generality and efficiency.

First, they can only target a specific type of hardware and

a specific class of DNN operators, requiring researchers to

design mapping approaches for each hardware and operator

separately. For instance, the work [3] presents a mapping

approach for customizing 2D convolution operators on an

SRAM-based PIM accelerator Neural Cache. However, this
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specific mapping approach is not universally applicable across

other PIM architectures. Second, template-based mapping is

not optimal as it is designed for a few fixed mappings only.

For example, PUMA[1] maps weights to crossbar by mapping

the input-channel and output-channel dimensions to the row

and column dimensions of the crossbar, respectively. They

don’t consider mapping input feature maps to the crossbar or

mapping the same kernels to multiple crossbars to accelerate

computation.

We find that despite the various designs of PIMs, their

core functionalities can be represented by a tensor-based

compute function and data mapping constraints. For instance,

PUMA[1] and ISAAC[2] are PIM hardware implementations

based on ReRAM, where the compute function is matrix-

vector multiplication (MVM), and the mapping of matrix

elements involves mapping rows (columns) of the matrix to

columns (rows) within the array. When performing operator

mapping, the key point is to represent the operator through

hardware compute functions, while concurrently adhering to

the constraints imposed by data mapping. Therefore, we

propose a hardware abstraction around the core of PIM and

develop a mapping framework for diverse PIM platforms based

on this abstraction.

In this paper, we develop ARES, a general mapping frame-

work for diverse PIM platforms. The core of this frame-

work is a general hardware abstraction for PIM platforms.

The hardware abstraction consists of two aspects: compute

abstraction and memory abstraction, corresponding to the

hardware’s compute functions and data mapping constraints,

respectively. Compute abstraction includes two parts: arith-

metic types and the form of tensor computation. Memory

abstraction can be represented using a mapping matrix and

an offset vector. We perform mapping by jointly scheduling

computation and memory mapping. Through an analysis of

compute abstraction, we derive valid mapping strategies in-

volving the correspondence between tensors within operators

and hardware tensor operands, as well as the mapping between

operator loop dimensions and hardware compute dimensions.

Subsequently, constrained by the abstractions of memory, we

further ascertain constraints on loop sizes mapped onto the

hardware. By combining compute and memory abstractions,

we establish an exhaustive set of feasible mapping schemes.

Building upon this foundation, we orchestrate the schedul-

ing of operator computations on the Processing-in-Memory

(PIM) architecture, encompassing considerations such as loop

orders and the utilization of memory arrays, thereby generating

the comprehensive mapping space. Upon exploring the feasible

mapping space using dataflow models[9], [10], [11], [12],

[13], we can find the optimal mapping strategies. Leveraging

the aforementioned methodology, we actualize an automated

mapping framework. By soliciting operator descriptions within

the network and hardware abstractions from the user, our

framework builds up the mapping space, generates feasible

mapping alternatives, and systematically explores these alter-

natives within the constructed mapping space to yield highly

efficient mappings.

The contributions of this paper are summarized as follows:

• We propose a general abstraction for PIM devices that

includes compute abstraction and memory abstraction.

This hardware abstraction can model the scheduling space

of various PIM devices.

• We build a systematical mapping space for PIM devices,

which enables the mapping of different tensor operators

onto diverse PIM devices.

• We build an automatic mapping flow. Using this flow, we

design a mapping framework that efficiently maps neural

networks to diverse PIM platforms.

We conduct experiments on four different hardware plat-

forms adapted from real-world PIM accelerators, includ-

ing SIMDRAM[14], Neural Cache[3], PUMA[1] and PIM-

HBM[7]. Compared to the fixed template-based mapping

approaches proposed in [15], [1], [7], our results achieve up to

70% speedup for single operators and 50% speedup for overall

network mapping.

II. BACKGROUND

PIM devices can be represented uniformly as illustrated in

Figure 1a. A PIM unit is defined as a complete computational

logic that can directly access an array of memory, which is

the fundamental component of PIM devices. The PIM unit

integrates the functionality of both memory and computation,

and is composed of memory arrays, registers or buffers,

processing logic and control units. The implementation of

these modules may vary in different hardware. PIM units

are connected via a bus or on-chip network, and can receive

data and instructions from buffers. Together, these components

constitute the entire PIM device. PIM devices can interact with

host devices, such as CPUs and GPUs, and access data from

off-chip host memory, such as DRAM and NVM.

The PIM architecture can be divided into three categories,

including logic-based PUM, MVM-based PUM, and PNM.

A. Logic-based PUM

Logic-based PUM performs logic operations by exploiting

the circuit properties of memory arrays[5], [16], [17], [14], [3],

[18], [19], [20], [21]. Different memory types or initialization

methods can result in various logic operation types, such as

NOR and NAND. The basic unit of operation is a row, and

for binary operations like AND and OR, or unary operations

like NOT, multiple rows that hold operands are simultaneously

activated when computing. The operation is element-wise, and

data on the same bitline are operands. As the basic operation

is a one-bit logic operation, bit-serial compute mode is used

to implement advanced operations such as multi-bit addition

and multiplication. This approach requires all bits of the

operands to be placed in the same column of the memory

array (rather than the same row), as depicted in Figure 1b

left, and computation is performed from low bit to high bit.

In SRAM- and ReRAM-based circuits[3], [22], data transfer

across bitlines is typically designed to support reduction

operations on data from different bitlines, as illustrated in

Figure 1b. We assume that data transfer across bitlines is also
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Fig. 1: Processing-in-Memory Architecture

feasible in DRAM-based implementations. This assumption

can be implemented using the design proposed in Drisa[17]

or by adding auxiliary circuits besides the sense amplifiers.

B. MVM-based PUM

MVM-based PUM utilizes a memory array to perform

MVM operations [1], [6], [23], [4], [2]. In this approach,

the matrix elements are stored in the memory array prior

to the operation, and the vector is input along the wordline.

Multiplication operations are then performed between the

input data and the data stored in memory cells. Addition

operations are carried out on the bitline based on Kirchhoff’s

law or additional adder trees to obtain the final MVM result.

Each cell in the memory array can store 1-bit or multi-bit

data. If the weight data exceeds the capacity of one cell, the

data is placed in adjacent cells on the same wordline, and

the final results are obtained by combining adjacent results

through shift-and-add units. If the input data width exceeds

the bit width limit of each wordline or precision of digital-

analog converters, the input data is provided in multiple cycles

in a bit-serial manner, and the data from multiple cycles are

accumulated using shift-and-add units to obtain the final result.

C. Processing-near-Memory

Near-memory computing [24], [25], [26], [27], [28], [29],

[30], [31], [32], [8], [7], [33] is a computing paradigm that

enables flexible compute logic implementations and memory

mapping rules compared to PUM. Its computation is achieved

by embedding additional computation circuits within the mem-

ory hierarchy, as illustrated in Figure 1d.

The embedded circuitry can realize various operations, such

as SIMD vectorization[7], reduction trees, dot operations[30],

or a function-complete processing core[8], such as a RISC

Core. There are three main differences between near-memory

computing and traditional computing systems. First, because

near-memory computing lacks a memory controller, data

placement in memory needs to be more precisely controlled.

Second, the computational logic can be embedded in different

locations in memory, such as the rank dimension of 2D-

DIMMs, the bank dimension, the logic die of 3D stacked

memory, etc. Different embedded compute circuits require

different data placement methods. Third, the data path in
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near-memory computing is more complex, for instance, PIM-

HBM’s computation unit can obtain operands from both

memory and registers, and the data in registers can come from

the adjacent memory banks or be directly written into the PIM

units from the host processor. Therefore, careful consideration

is required to decide which data should be stored in the register

and which data should not be placed in the PIM unit to ensure

efficient operation.

III. ARES OVERVIEW

The workflow of ARES is shown in Figure 2. The user’s

input consists of two parts: high-level operator descriptions

and hardware descriptions. The operator description mainly

includes the iteration space of the operator and the access

matrixes of tensors, which specify the relationship between the

computations performed by an operator and the correspond-

ing data elements accessed during those computations. The

hardware description is written using our proposed hardware

abstractions: compute abstraction and memory abstraction.

Compute abstraction represents the compute function of the

PIM hardware, while memory abstraction represents the map-

ping requirements of the data in compute abstractions.

The hardware abstraction is explained in detail in Section

IV. ARES generates mappings mainly through two steps. The

first step is compute binding, which involves representing the

software computations using hardware compute functions. In

this step, we first map software tensors to hardware tensors.

Then, based on the analysis of compute abstraction and data
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mapping matrix in memory abstraction, we generate feasi-

ble loop binding options. Finally, combining with memory

abstraction and the size of the memory array, we generate

constraints on the size of binding loops and data mapping

functions. The second step involves scheduling analysis for

resource allocation, execution order of compute functions,

and data transfers between different levels of memory. These

steps are described in detail in Section V. Through the above

steps, we can obtain the efficient mappings for various PIM

backends.

IV. HARDWARE ABSTRACTION

This section explains the uniform hardware abstractions,

which consist of compute abstraction and memory abstrac-

tion. Compute abstraction models operators that the hardware

supports, including both arithmetic types and tensorized form.

Memory abstraction models constraints of data layout, which

must be met to perform computation on hardware.

A. Compute Abstraction

Definition 1: Compute Abstraction. Compute abstraction

is an equation that delineates the hardware compute function,

establishing a correspondence between the output tensor and

input tensors. Given the arithmetic type denoted as F , the

compute dimension space denoted as �D, and memory access

indices�i and {�j0,�j1, ... �jk−1} for the output operand and input

operands, respectively, the formulation is as follows:

Dst[�i] = F(Src0[�j0], ...,Srck−1[�jk−1]) (1)

In this formulation, the output tensor element at index �i is

computed based on the arithmetic operation F applied to

elements Src0[�j0], ...,Srck−1[�jk−1] from input tensors.

The arithmetic type F describes high-level operations used

in network operators such as multiply-add and activation oper-

ations, which are not low-level operations natively supported

by the hardware. If the required high-level operation is not

directly supported by the hardware primitives, then additional

steps are needed to generate the arithmetic type for the

operation. The vector �D is used to determine the dimensions of

computation. Unlike traditional hardware primitives, the range

of �D cannot be directly determined by an affine transformation

operation. The range of �D is related to the size of the memory

array used for computation, the implementation method (bit-

parallel or bit-serial), and other factors. Constraints on the

range of �D must be established after defining the memory

abstraction.

B. Memory Abstraction

Definition 2: Memory Abstraction. Memory abstraction

are functions that delineate the bit-level mapping constraints

of tensor operands within a compute abstraction. The input

to each function consists of the position of a bit unit within

the hardware computational space, encompassing two distinct

components: the index �j of the hardware compute dimension

and the position b of the bit within an element of the tensor

operand. The output is a position vector, signifying the location

of the specified bit of the tensor element within the memory

array. The function can be modeled as a linear function, which

can be represented in the following form:

�addr = f ( j̃) =A · j̃T + �o f f set, for all b : 0 ≤ b < B

j̃ = [�j,b]
(2)

where �addr is the memory address constraint of each bit of an

element in tensor T . j̃ is the augmented index of the tensor,

which is composed of original index �j in the tensor and bit

index b in an element. Matrix A is the memory mapping

matrix that maps each bit to a memory location. �O f f set
models the free variables in the mapping procedure. For one

compute abstraction instance, the �o f f set is a constant vector,

which does not need to be the same across multiple compute

instances.

C. Discussion

Since the main characteristics of PIM hardware can be

represented by a tensor-based compute function and corre-

sponding address mapping constraints, our proposed hardware

abstraction can capture the diversity of PIM hardware. We

provide two examples to illustrate this.

1) Case I: MVM-based PUM: The compute and memory

abstraction of MVM-based PUM can be represented as fol-

lows:

Dst[m] = MAC(Src1[m,k],Src2[k])

addrSrc1
=

(
0 1 0

B 0 1

)
∗ (m,k,b)T +(o1,o2)

T

The compute abstraction is a matrix-vector multiplication

operation. In the memory abstraction, the reduction dimension

k is mapped to the row dimension of the memory array, while

the parallel dimension is mapped to the column dimension of

the memory array. Each element in the Src1 matrix occupies

adjacent B memory cells.

2) Case II: Logic-based PUM: The compute and memory

abstraction of logic-based PUM can be represented as follows:

Dst[m] = MAC(Src1[m,k1,k2],Src2[m,k1,k2])

addrT =

(
0 x 0 1

1 0 M 0

)
∗ (m,k1,k2,b)T +(o1,0)

T

The compute abstraction includes one parallel dimension

{m} and two reduction dimensions {k1,k2}. The parallel

dimension describes the basic SIMD operations. Logic-based

PUM involves bitwise reduction operations, and the k1 and

k2 reduction dimensions are used to model these operations.

k1 represents the temporal dimension of reduction operations,

which are performed sequentially for k1 iterations. k2 repre-

sents the spatial dimension of reduction operations. After k1

SIMD operations, we need to reduce k2 groups of elements to

1 group. This requires log2(k2) reduction operations.

During the mapping process, the elements corresponding to

m and k2 are placed in the column dimension of the memory

array, while the elements corresponding to k1 are placed in

the row dimension of the memory array. Due to the bit-serial
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execution mode, the bits corresponding to the same element

also need to be placed in a column. It is worth noting that there

is a symbolic variable x in the mapping matrix. This variable

indicates that the data corresponding to the k1 dimension

should be placed in the row dimension, but it does not require

continuous placement.

V. MAPPING FLOW

This section first defines the mapping problem for in-

memory computing hardware. Then, it introduces how to

construct a complete mapping space. Finally, we introduce

our approach for exploring the mapping space.

A. Mapping Definition

Mapping is the transformation of DNN operator com-

putations into invocations of hardware compute functions.

This process can be divided into two main steps: binding,

which entails determining the computation carried out by an

individual compute function, and scheduling, which entails

establishing the sequential order and spatial arrangement of

multiple compute function invocations.

Given the set of operands {Ti}, encompassing both source

and destination tensors, the loop iterations {Li}, and the

data access matrixes {Ai} associated with a deep neural

network (DNN) operator, the computation of the operator

can be expressed as ({Ti},{Li},{Ai}). Similarly, considering

the operands {Oi}, compute dimensions {Di}, data indices

in the hardware compute abstraction {Ii}, and the mapping

matrixes {Mi} within the memory abstraction, the computation

performed by an individual processing-in-memory (PIM) unit

can be represented as ({Oi},{Di},{Ii},{Mi}). The binding

process can be further subdivided into three types of map-

pings: operand binding, dimension binding, and binding size

determination. These mappings are elaborated as follows:

{Ti → O j}
{Li → D j}
{Li → Si}

(3)

In the given equations, Si represents the size of the loop Li
binding to the hardware compute dimension O j.

After mapping the software computations onto hardware

compute functions, we further schedule these hardware prim-

itives, entailing the determination of the execution position

and timing for each individual hardware primitive. This can

be formalized as follows:

{Li → (pi, timei)} (4)

where pi signifies the spatial location of the memory array,

while timei represents the begin time of the associated hard-

ware function.

B. Mapping Space

In the subsequent exposition on the mapping space, we

employ the mapping of 2D convolution onto MVM-based

PUM as an illustrative example as in Figure 3 to elucidate

kernel Input feature map

X

D
A

C
s

ADCs

Data Buffers

crossbars

Off-chip DRAM

Memory Level = (Buffer, DRAM)
# compute units = # crossbars

Fig. 3: Convolution 2D workload and architecture of MVM-

based PIM hardware

our mapping process. Figure 3 depicts the 2D convolution

operation alongside the target hardware. The 2D convolution

operator encompasses seven nested loop iterations, represent-

ing distinct dimensions such as batch, channel of output

feature map, output feature map’s length and width, channel of

input feature map, as well as the dimensions of the convolution

kernel’s length and width. As explained in Section IV-C1,

the hardware compute function exhibits two key dimensions,

namely DM and DK . The hardware’s computation is performed

by #crossbar memory arrays, while the memory hierarchy

encompasses two levels, encompassing on-chip data buffers

and off-chip main memory (DRAM).

The overall mapping space can be partitioned into two

main components: binding and scheduling. Binding involves

the mapping of network operators onto hardware compute

functions, while scheduling entails the orchestration of these

compute functions, determining execution order, spatial lo-

cation, and the number of memory arrays engaged in the

computation, among other factors.

1) Binding: The core part is to determine the latter two

mapping in Equation 3. We first classify the hardware dimen-

sion types. We can divide them into parallel dimensions and

reduction dimensions. Parallel dimensions calculate different

output tensor elements, while reduction dimensions calculate

the same output tensor element. In Figure 3, DM is a parallel

dimension, and DK is a reduction dimension. A basic idea is

to map the parallel (reduction) dimensions in the operator’s

iteration space to the parallel (reduction) dimensions in the

hardware, that is, {LN ,LK ,LH ,LW}→ DM,{LC,LR,LS}→ DK .

The mapping approach above may not always ensure cor-

rectness. This is because the data reuse in the compute

abstraction and the data reuse rules of software operators are

different. Assume that tensor Ti1 in the operator is mapped

to O j1 , and dimension Li2 is mapped to D j2 , if Ti1 is not

reused in dimension Li2 while O j1 is reused in dimension

D j2 , then the mapping would be incorrect. We illustrate

this with the example in Figure 4. Figure 4 illustrates two

different binding approaches. In the first binding approach,

the weights are mapped onto the crossbar, and the LH and

LC dimensions correspond to the hardware’s DM and DK
dimensions, respectively. With this binding approach, the data
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hardware

corresponding to the input feature map needs to be accessed

along the wordlines, and memory cells on the same wordline

need to access the same data of input feature maps. Taking

the computations at positions p0 and p1 in the figure as

examples, the computation at p0 is W0,0,0,0 ∗ F0,0,0,0, while

the computation at p1 is W0,0,0,0 ∗F0,0,1,0. Since they require

different input feature map data, this mapping approach is

incorrect. On the other hand, in the second mapping approach

depicted, all the memory units on the same wordline utilize

the same data elements of the input feature map. Therefore,

this mapping approach is correct. To get the correct binding

approaches, we need to determine the dimensions in which a

tensor can be reused.

For a data Ti, it can be reused in a dimension L j if and only

if L j does not participate in the data indexing computation.

In other words, the sum of absolute values in column L j of

its access matrix A is equal to zero, which can be expressed

formally as follows:

∑
k
(|Ak, j|) = 0 (5)

By applying this, we can clearly determine all feasible loops

{Li} that can be mapped to hardware dimension D j.

We take the mapping of 2D convolution to MVM in Figure

3 as an example. When the weights of the convolution are

mapped to crossbar, the feasible mapping strategy is

{LC,LR,LS}→ DK ,{LK}→ DM

and when the input feature map of the convolution is mapped

to crossbar, the feasible mapping strategy is

{LC,LR,LS}→ DK ,{LN ,LH ,LW}→ DM

Based on the feasible mapping strategies, we need to select

a specific mapping scheme and determine the size of the map-

ping iterations with respect to the constraints of the computing

units and memory arrays. When selecting a mapping scheme,

TABLE I: Logic-DRAM computing system parameters

Processor
14 cores/28 threads, 2.6GHz

L{1-3} cache: 32KB, 256KB, 35MB

L3 cache
14 slices, 20 ways, 4 banks, 4 arrays

Array size: 256 * 256
Memory

8KB row size, FR-FCFS scheduling
controller

Main memory

DDR4-2400, 4 channels, 4 ranks, 16 banks
Timing parameters:

tRCD = 17, tCL = 17, tRP = 17,tRC = 56,
tCCD S=4, tCCD L=6,tRRD S=4,

tRRD L=6, tFAW=26, tBL=4,

we assume that each loop can be mapped to at most one

hardware dimension, and the mapping size of Li is Si. We take

the MVM-based PIM devices for example here. Assuming the

memory size limit is (X,Y), when we map input feature to the

crossbar and each element in the input feature map occupies

B memory cells, the constraints of the mapped iteration size

is as follows:
SC ∗SR ∗SS ≤ X

SN ∗SH ∗SW ∗B ≤ Y

2) Scheduling: After compute binding, we determine the

computation performed by a single compute function. In order

to fully map the operator onto PIM hardware for computation,

we need to schedule PIM units and all levels of data buffers,

that is, dataflow scheduling. These scheduling operations cor-

respond to loop transformations such as tiling, reordering, and

parallelization. For each level of the hierarchical data buffers,

we need to map a sub-space of iteration space and determine

the execution order of this sub-space, which has a big impact

on the size of data transfer. If there are multiple compute

modules, we can also map some loops to spatial dimensions

to fully utilize the computing resources.

C. Mapping Space Exploration

We employ a genetic algorithm for exploring the mapping

space. We treat loop binding, sizes of loops mapped to spatial

and temporal dimensions as genes. Each mapping can be

represented as a genome. By applying transformations such

as crossover and mutation to the genes, we can generate new

potential genes based on the existing ones. The crossover

operation happens between two parent genomes, interchanging

the value of tile sizes. Mutation occurs within a genome by

changing the tile size, loop orders and parallel dimensions.

The fitness is defined as the execution time on the hardware

simulator. By these genetic transformations, we can explore

the mapping space efficiently to find the optimal mapping.

VI. EXPERIMENT

A. Experiment Setup

We choose three kinds of PIM hardware as our experi-

mental platforms, logic-based computing devices, MVM-based

devices and near memory computing devices. These platforms

can cover most of the computing paradigms of PIM. For

logic-based PIM devices, we select logic-{DRAM, SRAM} as

Authorized licensed use limited to: Peking University. Downloaded on March 19,2024 at 07:58:07 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: In-ReRAM computing architecture parameters

Hierarchy
1 node - 4 * 4 tiles - 8 cores - 2 crossbars

Structure
Crossbar size: 128 * 128

Cores
register size:1KB
connection: bus

Tile
shared memory: 64KB

connection: mesh

TABLE III: Near-DRAM computing Parameters

Main memory
HBM2, 8GB, 32 pseudo channels

8 memory dies (4 with PUs)

NDP
32 adder, 32 multiplier, 300MHz

registers: GRF x32 (each 32 * 8b)

our platform. We select an Ambit-like [5] architecture design

as logic-DRAM platform, which is based on the existing

DDR4 hardware, and the hardware parameters are available in

industry datasheets [34], shown in Table I. We select Neural

cache-like architecture design as logic-SRAM platform, which

is implemented based on the last level cache of Intel Xeon

E5-2697 v3. The hardware parameters are from the work

Neural Cache[3]. For MVM-ReRAM devices, we implement

a hardware like PUMA [1], and hardware parameters are

from PUMA, shown in Table II. For near-DRAM comput-

ing paradigm, we implement a hardware platform similar to

PIM-HBM [7], where the compute logic is implemented on

bank-level on 4 memory dies of HBM2, and the hardware

parameters are from [7], shown in Table III. We develop cycle-

accurate simulators for the these hardware platforms.

For the three kinds of hardware, we select different baseline

mapping strategies. For logic-PIM devices, we use the fixed-

template mapping approachs in Neural Cache. They map

kernel height (R) and width (S) to one bitline, and map input

channel (C) dimension to multiple wordlines. And C bitlines

are responsible for a few points in a single feature map of

one output channel (K) dimension. For MVM-PIM, we choose

an channel-wise binding approach [1]. Channel-wise binding

maps input channels and output channels to row dimension and

column dimension of crossbars, respectively, which is a kind

of weight-stationary mapping. For near-memory computing

devices, we take a fixed binding approach as our baseline.

For 2d-convolution, we map the output channel dimension

to the hardware primitive; for GEMM kernel (C[M,N] =
A[M,K]∗B[K,N]), we map M or N dimension to the hardware

primitive.

We conduct experiments on a wide range of DNN workloads

to verify the efficiency of mapping under different operator

configurations. The networks we select include ResNet50 [35],

ResNeXt-50 [36], MobileNet [37], Bert[38], GoogleNet[39],

DenseNet[40]. In addition to evaluating the entire network, we

also conduct tests on individual convolution-2d operators and

gemm operators. The convolution-2d operators are selected

from ResNet18, and their shapes are presented in Table IV.

The shapes of gemm operators are [1024,1024,1024] (denoted

as G1) and [2048,2048,2048] (denoted as G2) for [M,K,N].

TABLE IV: Configurations of the single operators

Layer N K H W C R S Stride
C0 4 64 112 112 3 7 7 2
C1 4 64 56 56 64 3 3 1
C2 4 64 56 56 64 1 1 1
C3 4 128 28 28 64 3 3 2
C4 4 128 28 28 128 1 1 1
C5 4 128 28 28 128 3 3 1
C6 4 256 14 14 128 3 3 2
C7 4 256 14 14 256 1 1 1
C8 4 256 14 14 256 3 3 1
C9 4 512 7 7 256 3 3 2
C10 4 512 7 7 512 3 3 1

For all the networks and operators, the precision is 8-bit for

both weights and input data.

B. Results of Logic-PIMs

1) Single Operator Results: Figure 5 shows the perfor-

mance results of our method and baselines. The performance

improvements are 20.13% and 27.98% on average for logic-

SRAM and logic-DRAM, respectively. For different layers,

the performance improvements comes from different aspects.

For operators that have larger sizes of spatial dimensions,

hardware’s compute resources are fully utilized, and how to

schedule data in and out to reduce data transfer traffic dom-

inates the performance; for operators that have smaller sizes

of spatial dimensions, how to parallelize the computation to

make better use of computation resource has a more significant

impact on the final performance.

2) Full Network Results: Figure 6 shows the performance

of the full networks. For an entire network, there is an

overall performance improvement of up to 21% and 26%, for

logic-SRAM and logic-DRAM, respectively. The performance

improvements varies widely across networks. For example, for

logic-SRAM devices, the resnet shows only 11% improve-

ment; while for the vgg net there are 21% improvement.

C. Results of MVM-PIM

1) Single Operator Results: Figure 5 is the performance

results of our method and baselines. The performance im-

provements are 69.2% for MVM-ReRAM platform. The per-

formance improvements comes from two aspects. The first is

that in our schedules, we can copy weight kernel to multiple

crossbars, which greatly increases the parallelism; the second

is that by scheduling input and output data flow, we reduce

the data traffic.

2) Full Network Results: For the whole network sched-

ule on MVM-ReRAM platform, there’s one more schedule

dimension compared to single operator scheduling. The new

dimension is that we need to allocate resources properly

among layers of the whole network. If the layer sequential

execution is used directly, we can minimize the execution

time of individual operators, but we need to keep loading

weights when computing different operators. The time of

crossbar programming is far more than one MVM operation.

Therefore, the execution mode of layer sequential is not
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Fig. 5: Performance of single operator on PIM hardware
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Fig. 6: End-to-end performance of full network compared with baseline

suitable for the MVM-ReRAM platform. We adopt the layer

pipeline execution mode, and divide the crossbar resources

among multiple network layers in order to make the overall

computation time shortest.

Figure 6 shows the performance of the full networks. The

overall performance improvement is up to 52%. Similar to

the logic-SRAM and logic-DRAM platform, the performance

improvements varies greatly across networks.

D. Results of PNMs

1) Single Operator Results: Figure 5 shows the perfor-

mance results of our method and baselines. The performance

improvements are 11.98% on average for PNM. This im-

provement is mainly from the reuse of memory resources.

Because baseline does not analyze data reuse between compute

instances, a PIM unit can store fewer data. This leads to the

fact that the PIM unit needs to interact with other memory

more frequently to obtain data, which increases the data

transfer overhead. In the experimental results, we can find that

the performance gap between different network layers is not

large. Because they can all make full use of the computational

resources, the difference mainly lies in the number of visits to

the memory.

2) Full Network Results: Figure 6 shows the performance

of the full networks. For entire networks, the performance

improvements are 11.01% on average. Which is very similar

to the performance the a single layer.

VII. CONCLUSION

In this paper, we have analyzed numerous PIM devices and

developed a general abstraction for PIM hardware. This gen-

eral abstraction includes two aspects: abstraction of compute

functions and abstraction of memory mapping. With these

abstractions, we have constructed a complete mapping space

for PIM hardware and implemented an automated process

to complete the mapping. We conducted experiments with

commonly used neural network operators on four different

hardware platforms. Compared with the previous template-

based method, we achieved up to 70% performance improve-

ment for a single operator and 50% performance improvement

for the whole network.
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