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ABSTRACT
Hardware specialization is a promising trend to sustain perfor-

mance growth. Spatial hardware accelerators that employ special-

ized and hierarchical computation and memory resources have

recently shown high performance gains for tensor applications

such as deep learning, scientific computing, and data mining. To

harness the power of these hardware accelerators, programmers

have to use specialized instructions with certain hardware con-

straints. However, these hardware accelerators and instructions

are quite new and there is a lack of understanding of the hard-

ware abstraction, performance optimization space, and automatic

methodologies to explore the space. Existing compilers use hand-

tuned computation implementations and optimization templates,

resulting in sub-optimal performance and heavy development costs.

In this paper, we propose AMOS, which is an automatic compi-

lation framework for spatial hardware accelerators. Central to this

framework is the hardware abstraction that not only clearly speci-

fies the behavior of spatial hardware instructions, but also formally

defines the mapping problem from software to hardware. Based on
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the abstraction, we develop algorithms and performance models to

explore various mappings automatically. Finally, we build a compi-

lation framework that uses the hardware abstraction as compiler

intermediate representation (IR), explores both compute mappings

and memory mappings, and generates high-performance code for

different hardware backends. Our experiments show that AMOS

achieves more than 2.50× speedup to hand-optimized libraries on

Tensor Core, 1.37× speedup to TVM on vector units of Intel CPU

for AVX-512, and up to 25.04× speedup to AutoTVM on dot units

of Mali GPU. The source code of AMOS is publicly available.

CCS CONCEPTS
• Software and its engineering→ Source code generation; •
Computer systems organization→ Special purpose systems;
• Hardware→ Emerging architectures.
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1 INTRODUCTION
Recently, we havewitnessed the success of domain-specific architec-

ture in various application domains. Among the various hardware
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accelerators, spatial architecture that organizes a large number

of processing elements in a structural and hierarchical manner is

demonstrated to be extraordinarily efficient for various tensor ap-

plications in deep learning [6, 15, 20, 50], scientific computing [36],

and data mining. The spatial architecture naturally aligns with

the tensor computations with regular loop structures and memory

access patterns, which are often represented using nested loops.

For example, Google TPU [27] and Gemmini [17] specialized for

GEMM computations use systolic array architecture. Moreover, the

spatial architectures continue to evolve with new tensor applica-

tions [12, 35, 61].

Depending on the degree of generality and programmability,

hardware accelerators can be designed differently and thus require

different mapping strategies. We divide the existing mapping flows

for spatial accelerators into two categories: hardware-aware and
ISA-aware. For specific domains, the hardware design and software

mapping can be coupled together by providing a domain-specific

hardware and software interface [28, 33, 47, 62]. More clearly, the

compiler/mapper is aware of the hardware architecture details

such as the number of processing elements (PEs) and their inter-

connection, and then the mapping can be formulated as optimiza-

tion problems with respect to hardware constraints [24, 39, 66]. We

call this hardware-aware mapping. This approach achieves very

high energy efficiency for specific application domains but sacri-

fices flexibility. For ISA-awaremapping, the hardware accelerators

are programmable with ISA, which separates the algorithmic speci-

fication from hardware architectural details. These instructions are

often exposed as special intrinsics and using these intrinsics for

tensor computation is called tensorization [9]. We focus on the

ISA-aware mapping problem in this paper.

While intrinsics provide programmability, ISA-aware mapping

is still a challenging task mainly for two reasons. First, there are

different ways to compose a mapping using intrinsics. For example,

we find that there are 35 different ways to map the 7 loops of a 2D

convolution to the 3 dimensions of Tensor Core. The quality of the

mapping is apparently critical to the performance as different map-

pings vary substantially by affecting data locality and parallelism.

But existing compilers [9, 10, 52, 58, 67] heavily rely on manual pro-

gramming with intrinsics to develop libraries or templates, which

may miss the optimal mapping choice. Second, different accelera-

tors provide different intrinsics with intricate compute and memory

semantics. For example, Tensor Core uses different intrinsics to

describe matrix load/store, matrix multiplication, and initialization

semantics, while for Mali GPU, a single arm_dot intrinsic can work

without other explicit load/store intrinsics. Therefore, to support a

single algorithm on different accelerators, the programmers prac-

tically need to implement and tune the algorithm for each target

platform individually. Apparently, a desirable mapping solution

is to use a unified approach to expose a search space of feasible

mappings that can be explored automatically.

In this paper, we address the ISA-aware mapping problem by

providing one layer of abstraction above the intrinsics. This is based

on the following insights: 1) although different accelerators use dif-

ferent intrinsics, these intrinsics can be rewritten into an equivalent

scalar format, which not only breaks the original opaque intrinsic

into an analyzable format but also bridges the gap between high-

level tensor programs and low-level intrinsics; 2) though different
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Figure 1: a) Accelerator design example with 3-level hierar-
chy. b) Examples for different intrinsics.

spatial accelerators vary in architecture design, they bear funda-

mental similarities in mapping design. For example, their hardware

constraints can be uniformly defined as problem size constraints

and memory capacity constraints. Based on these insights, we are

able to use a unified abstraction to describe different intrinsics of

different accelerators and design an automatic solution to mapping

generation, validation, and exploration for different hardware.

In detail, the proposed abstraction includes two parts: compute

abstraction and memory abstraction, which depict the compute and

data access operations within an intrinsic in scalar format. Based

on the proposed abstraction, we further develop a two-step map-

ping generation flow and a validation algorithm to automatically

generate valid software-hardware mappings. The generation flow

first maps software computations to a virtual hardware accelerator

without hardware constraints and then modifies the mapping with

respect to the actual physical hardware constraints. However, not

all the generated mappings are valid because they may be different

from the original semantics. Therefore, we design a validation algo-

rithm based on a binary matrix representation to check the validity

of mappings. Moreover, by combining tuning and analytic models

together, we can efficiently explore the mapping space to achieve

high performance on spatial accelerators. Finally, we implement the

techniques introduced above into a compilation framework called

AMOS.

We conclude our contributions as follows:

(1) We propose a hardware abstraction to formally define the

spatial hardware compute and memory behavior and the

mapping from software to hardware.

(2) We propose a fully automatic solution to the ISA-aware map-

ping problem by designing a two-step mapping generation

flow, a novel validation algorithm, and a performance model

for exploration.

(3) We propose a compilation framework called AMOS that

supports a wide variety of tensor applications on spatial

accelerators for both operator level and full network level.

Mapping tensor computations onto spatial accelerators is so eso-

teric that it is very difficult for the users to understand the hardware

mapping (e.g., structure and constraints) and performance optimiza-

tion space. AMOS solves the mapping problem by formulating an

equivalent iteration mapping generation and validation problem.

Exploration of mapping space is also necessary as different tensor
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computations and input shapes have diverse behaviors and prefer

different hardware mappings.

The fundamental improvement of AMOS over prior approaches

(hand-tuned libraries [31, 41–43] and template-based compilers

[10, 58, 68]) lies in two aspects: hardware abstraction of spatial

hardware that expresses the behavior of different intrinsics in a

general manner and the formulation and exploration of the com-

plete mapping space. The core hardware abstraction enables AMOS

to systematically explore the space by varying the mapping of soft-

ware iterations to hardware iterations and performing mapping

validation. Meanwhile, prior libraries and compilers are fundamen-

tally limited in two aspects. First, prior works such as hand-tuned

libraries and template-based compilers can only explore one or a

few fixed mappings by manually writing templates or low-level

code. Second, even if the templates can be designed manually with

a moderate amount of engineering effort, it is still not clear what

mappings and how many of them should be designed as there is

a lack of understanding of the hardware abstraction of spatial ac-

celerators and their mapping optimization space. Therefore, prior

works lead to sub-optimal performance and heavy development

costs.

The source code of AMOS is publicly available on Github (https:

//github.com/pku-liang/AMOS). Experiments show that AMOS can

achieve more than 2.50× speedup on Tensor Core compared to

hand-optimized libraries [41, 42], 1.37× speedup to expert designed
templates in TVM [9] using AVX-512, and up to 25.04× speedup

to AutoTVM [10] using dot units of Mali GPU. We also evaluate

AMOS on new spatial accelerator designs.

2 BACKGROUND AND MOTIVATION
2.1 Spatial Accelerator
Spatial accelerators are usually designed in hierarchy, the inner-

most level of which is designed in spatial architecture and employs

a processing elements (PE) array with dedicated dataflow and con-

nection. Different spatial accelerators have different designs for PE

array and support different kinds of computation. Each PE contains

compute units for multiply and accumulate computation. For outer

levels of hardware, sub-cores and cores are formed, sharing buffers

and global memories. The spatial hardware is usually embedded

into general-purpose architectures such as CPUs and GPUs and

serves as special functional units. In Figure 1 part a) we show an ex-

ample of 3-level accelerator. The innermost level corresponds to the

PE array with spatial architecture. In the second innermost level are

sub-cores and shared buffers. And in the outermost level are cores

and global memory. Accelerators such as Nvidia GPU [40, 45, 46]

with Tensor Core, Intel CPU with AVX-512, Mali GPU [3] with dot

unit, and Ascend NPU [32] with cube and vector units all follow

this design paradigm.

The interface between compilers and spatial accelerators is called

intrinsic. An intrinsic can be viewed as a special instruction de-

signed for the specialized hardware. There are two types of intrinsic:

compute intrinsic ( for computation instructions) and memory in-

trinsic (for memory load and store instructions). Figure 1 part b)

shows four examples of intrinsics. The first two intrinsics are from

AVX-512. _mm512_add_pd is a vector addition intrinsic (compute)

and _mm512_loadu_ph is a vector load intrinsic (memory). The

Table 1: State-of-the-art compilers/mappers for spatial accel-
erators.

Name Mapping Method
Hardware-Aware Mapping:
Nowatzki et al. [39] SMT + Linear Programming

CoSA [24] Mixed-Integer Programming

SARA [66] Mixed-Integer Programming

HASCO [60] Pre-defined SW-HW Interfaces + Tuning

ISA-Aware Mapping:
AutoTVM [10] Hand-written Templates + Tuning

Ansor [68] Generation Rules + Tuning

UNIT [58] Hand-written Templates

XLA [18] Templates and Rules

ISA Mapper [52] Templates and Rules + Tuning

Tiramisu [4] Polyhedral Model

AKG [67] Polyhedral Model + Templates

AMOS Analyzable Abstraction + Tuning

Table 2: The complex pattern matching rules in XLA have
only succeeded inmapping a few operators to TensorCore for
real DNN models. But our method can map more operators.

Name Total XLA Failed Our
Ops Mapped Example Mapped

ShuffleNet 70 6 depthwise conv 50

ResNet-50 71 15 strided conv 54

MobileNet 30 7 grouped conv 29

Bert 204 42 part of attention 84

MI-LSTM 11 0 linear 9

following two intrinsics are from Tensor Core WMMA. mma_sync
is a matrix multiplication intrinsic (compute) and load_matrix_sync
is a matrix load intrinsic (memory).

2.2 Existing Mapping Flow
In Table 1 we divide the state-of-the-art compilers/mappers for

spatial accelerators into two categories.

1) Hardware-aware mapping: The compilers/mappers are aware

of the detailed PE connection and buffer configuration so they can

lower software computations to PEs and memory through domain-

specific interfaces [28, 33, 47, 62]. This approach is mainly applied

for hardware and software co-design of specific domains. The major

objective of these mappers is to optimize hardware resource uti-

lization (parallelism and reuse) under certain hardware constraints.

They usually solve the mapping problem by solving an equivalent

linear programming problem to avoid brute-force searching in the

large schedule space [24, 39, 66]. These compilers/mappers are or-

thogonal to this paper and we focus on solving the problem of

mapping with programmable intrinsics without direct access to the

hardware architecture details.

2) ISA-aware mapping: For flexible spatial accelerators, they

expose intrinsics to the programmers. To use these intrinsics, the

programmers have to write schedule templates [10, 58] and tune for

performance within a given schedule space. For example, TVM [9]

exposes a tensorize interface for users to configure their own in-

trinsics and the users have to manually invoke intrinsics when

implementing the software. Polyhedral compilers such as AKG [67]

relies on a combination of polyhedral model and templates to map

software onto spatial accelerators. AutoTVM [10] and UNIT [58]

use hand-tuned templates with intrinsics to support a narrow range

https://github.com/pku-liang/AMOS
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Figure 2: The compilation flow of AMOS.

of operators and accelerators. To support new operators, new tem-

plates should be developed manually. The manual design process of

templates makes it hard to support new operators and accelerators.

Ansor[68] uses combinations of generation rules such as loop tiling,

reordering, and unrolling for general-purpose hardware. But this

approach falls back to template-based method for spatial accelera-

tors and requires the users to manually rewrite its rules for each

intrinsic.

2.3 Motivational Example
To motivate our work, we show that manually designed templates

for spatial accelerators can be inefficient for real workloads by pro-

filing the generated code of a state-of-the-art compiler XLA [18]

on Nvidia V100 GPU with Tensor Core. We use common DNN

models including ShuffleNet [65], ResNet-50 [20], MobileNet [22],

Bert [15], and MI-LSTM [59] as the inputs of XLA. XLA uses com-

plex templates tuned by hand to optimize the operators in these

models. Especially, some of these templates match special patterns

for Tensor Core, and the successfully matched operators will be

lowered to low-level hand-tuned libraries such as CuDNN [42] and

CUTLASS [43] to invoke Tensor Core intrinsics.

Table 2 lists the profiled results. Although the templates in XLA

are well designed, only a few operators in these networks are suc-

cessfully mapped to Tensor Core. Moreover, we find that it is possi-

ble to map many of the remaining operators to Tensor Core. For

example, the depthwise convolution [12] and grouped convolu-

tion [23] in ShuffleNet are variants of 2D convolution and the

multiply-add operations in these operators are amenable for Tensor

Core; the linear layers in MI-LSTM [59] can be mapped to Tensor

Core, too. If we can map these operators to Tensor Core, better

performance can be achieved. However, XLA fails in doing this

and falls back to the scalar units of the GPU. This is because the

patterns of these operators do not match with the XLA’s handwrit-

ten templates. For example, for linear layers, XLA expects to map

a matrix multiplication to Tensor Core, but when the batch size

is 1, linear layers in MI-LSTM are matrix-vector multiplications,

which mismatches with the pattern of matrix multiplication. As a

result, the achieved Tensor Core utilization is low (for the above 5

models, the average utilization is no more than 10%). In contrast,

our framework can successfully map all the operators except for

those that are inherently not supported by Tensor Core (e.g., ReLU

and MaxPooling). Table 2 also shows the number of our mapped op-

erators on Tensor Core. The data is collected from the experiments

conducted in Section 7.4.

The manually designed templates have two limitations. First,

these templates rely on explicit intrinsic programming to use the

dedicated computation units provided by spatial accelerators. For

example, XLA relies on hand-tuned libraries (CuDNN, CUTLASS)

to generate code with intrinsics, and the templates of AutoTVM [10]

and UNIT [58] use intrinsics explicitly for fixed loop patterns. It is

esoteric and time-consuming to develop new templates for most

users, and as a result, only a few operators can be mapped to spatial

accelerators. Second, the templates use fragile pattern matching

rules to map operators to accelerators. A subtle modification of

the operator (e.g., change the layout) can result in matching fail-

ure, which further reduces the number of operators that can be

successfully mapped to spatial accelerators.

Considering the limitations of manual intrinsic programming

and templates, we are motivated to design a fully automatic compi-

lation flow without templates.

3 AMOS OVERVIEW
In this section, we present the overall workflow of AMOS. In Fig-

ure 2, the input of AMOS is a high-level program written in the

domain-specific language (DSL) of existing compilers [9, 67]. The

DSL defines loops and tensors in a high-level language such as

Python. The loop structure and tensor access indices of each tensor

are also written in the DSL. Figure 3 part a) shows an example

for 2D convolution. AMOS represents hardware intrinsics using

our proposed hardware abstraction for both compute and memory.

We will explain the abstraction in Section 4. Then AMOS uses the

software and hardware information to generate different software-

hardware mappings. One software-hardware mapping is composed

of compute mapping and memory mapping. The compute mapping

specifies which operations defined in software should be mapped to

the target spatial hardware and implemented through correspond-

ing compute intrinsics. The memory mapping specifies how to load

data from global/shared memory and store the data in on-chip reg-

isters through memory intrinsics. The spatial hardware enforces

constraints such as fixed computation problem size and memory

capacity, which are reflected by the intrinsics. The details about

mapping generation under these constraints are illustrated in Sec-

tion 5.1. In addition to hardware constraints, preserving correct

semantics in mapping is also necessary. We use an algorithm intro-

duced in Section 5.2 to verify the validity of generated mappings.

After that, we combine tuning methods and analytical models in

Section 5.3 to choose a high-performance mapping from the valid

mapping candidates. At last, we explain the implementation of

AMOS and code generation in Section 6.

AMOS is fundamentally different from previous work [10, 18, 58]

in that it does not rely on hand-tuned templates and libraries and

provides a fully automatic compilation flow for mapping tensor
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programs to spatial accelerators through automatic mapping gen-

eration.

4 HARDWARE ABSTRACTION
In this section, we introduce hardware abstraction. The main idea is

to reform the low-level intrinsics into equivalent high-level scalar-

based representations. We divide the abstraction into two parts: 1)

hardware compute abstraction; 2) hardware memory abstraction.

The goal of this abstraction is to formally define the behavior of spa-

tial hardware accelerators so that AMOS can automatically analyze

the intrinsics of different spatial accelerators.

4.1 Compute Abstraction

Def 4.1. Compute Abstraction is a statement that specifies the
operands, arithmetic operation among operands, and data access
indices of operands for one hardware compute intrinsic. The range of
the indices should also be represented in the abstraction. Assume that
we have𝑀 data sources and the𝑚-th data source Src𝑚 is a 𝐷𝑚-dim
array. The output Dst is an 𝑁 -dim array. The indices of output array
are represented as ®𝑖 = [𝑖1, 𝑖2, .., 𝑖𝑁 ], and the indices of the𝑚-th source
array are represented as ®𝑗𝑚 = [ 𝑗𝑚

1
, 𝑗𝑚
2
, ..., 𝑗𝑚

𝐷𝑚
]. The statement is

written as:
Dst[®𝑖 ] = F(Src1 [ ®𝑗1 ], Src2 [ ®𝑗2 ], ..., Src𝑀 [ ®𝑗𝑀 ]),

s.t. 𝐴®𝑖 +
∑︁
𝑚

𝐵𝑚 ®𝑗𝑚 +𝐶 < 0

Explanation: The function F represents arithmetic operations

such as addition, multiplication, or multiply-add operation. The

matrices𝐴, 𝐵𝑚 (1 ≤ 𝑚 ≤ 𝑀), and𝐶 are used to express the range of

indices in an affine manner. The constant matrix 𝐶 is necessary be-

cause we need to express the boundaries of the indices. For example,

to represent a Tensor Core mma_sync intrinsic, which can be used

to compute a matrix multiplication for a special shape 32 × 8 × 16,
we can write the abstraction as

Dst[𝑖1, 𝑖2 ] = multiply-add(Src1 [𝑖1, 𝑟1 ], Src2 [𝑟1, 𝑖2 ]),

s.t.


1 0

0 1

0 0

 ·
[
𝑖1

𝑖2

]
+

0

0

1

 ·
[
𝑟1
]
+

−32
−8
−16

 < 0

(1)

4.2 Memory Abstraction
Def 4.2. Memory Abstraction is a list of statements. Each state-

ment in the list specifies the scope, operands, and memory access
indices. Similar to the symbols we have used in compute abstraction,
we use Dst to denote the output results and Src𝑚 to denote the input
data arrays. Prefixes𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑠ℎ𝑎𝑟𝑒𝑑 , and 𝑟𝑒𝑔 represent global memory,
shared buffers, and registers, respectively. ®𝑖, ®𝑗𝑚, ®𝑘 , and ®𝑙𝑚 are indices
for the data arrays in different scopes.

𝑟𝑒𝑔.Src1 [ ®𝑗1 ] = 𝑠ℎ𝑎𝑟𝑒𝑑.Src1 [ ®𝑙1 ]
...

𝑟𝑒𝑔.Src𝑀 [ ®𝑗𝑀 ] = 𝑠ℎ𝑎𝑟𝑒𝑑.Src𝑀 [ ®𝑙𝑀 ]

𝑔𝑙𝑜𝑏𝑎𝑙 .Dst[®𝑘 ] = 𝑟𝑒𝑔 [®𝑖 ]

Explanation: The memory abstraction shows that input data is

from shared buffers and the output data is stored in global memory.

Data load from global memory to shared buffers for inputs is not

shown for simplicity. The indices for the same operand within

different memory scopes can be different. For example, the intrinsic

load_matrix_sync that loads data from shared memory to Tensor

Core registers and the intrinsic store_matrix_sync that stores data
from Tensor Core registers to global memory can be expressed

together as

𝑟𝑒𝑔.Src1 [𝑖1, 𝑟1 ] = 𝑠ℎ𝑎𝑟𝑒𝑑.Src1 [𝑎𝑑𝑑𝑟𝑎 + 𝑖1 ∗ 𝑠𝑡𝑟𝑖𝑑𝑒𝑎 + 𝑟1 ]
𝑟𝑒𝑔.Src2 [𝑟1, 𝑖2 ] = 𝑠ℎ𝑎𝑟𝑒𝑑.Src2 [𝑎𝑑𝑑𝑟𝑏 + 𝑟1 ∗ 𝑠𝑡𝑟𝑖𝑑𝑒𝑏 + 𝑖2 ]
𝑔𝑙𝑜𝑏𝑎𝑙 .Dst[𝑎𝑑𝑑𝑟𝑐 + 𝑖1 ∗ 𝑠𝑡𝑟𝑖𝑑𝑒𝑐 + 𝑖2 ] = 𝑟𝑒𝑔.Dst[𝑖1, 𝑖2 ]

(2)

where 𝑎𝑑𝑑𝑟𝑎 , 𝑎𝑑𝑑𝑟𝑏 , and 𝑎𝑑𝑑𝑟𝑐 are base memory addresses and

𝑠𝑡𝑟𝑖𝑑𝑒𝑎 , 𝑠𝑡𝑟𝑖𝑑𝑒𝑏 , and 𝑠𝑡𝑟𝑖𝑑𝑒𝑐 are memory access strides. These pa-

rameters should be set by the compilers when mapping software

to hardware. These parameters are useful because the intrinsics

load_matrix_sync and store_matrix_sync require them as inputs.

Both compute and memory abstractions clearly model the be-

havior of hardware intrinsics and break the opaque intrinsics into

a series of equivalent scalar operations for holistic analysis. The

various intrinsics in existing accelerators [27, 32, 37] are actually

different SIMD-like (single instruction multiple data, reduction is

also allowed [11, 58]) operations, and SIMD-like operations can be

naturally decomposed into equivalent scalar operations, which can

be perfectly described by our abstraction. Therefore, the compute

and memory abstraction can be used for different spatial accelera-

tors.

4.3 Software-Hardware Mapping
In the following, we introduce the mapping from software to hard-

ware. First, we introduce the concept of software iterations. Ten-
sor computations can be represented as perfectly nested loops. Soft-

ware iterations are all the loop instances within the loop nest [5, 56].

For example, in Figure 3 part a) we show a 2D convolution example,

and the software iterations are listed in part b).

Similarly, we can define intrinsic iterations for intrinsics based
on the previously introduced compute abstraction. Intrinsic itera-

tions are the scalar operation instances within the indices range

of the compute abstraction. For example, there are three itera-

tions (𝑖1, 𝑖2, 𝑟1) in Tensor Core intrinsic as shown in Equation 1.

Given the definitions of software iterations, intrinsic iterations, com-

pute abstraction, and memory abstraction, we define the software-

hardware mapping as follows

Def 4.3. Software-Hardware Mapping is composed of two parts:
compute mapping and memory mapping. Compute mapping is to
assign each software iteration to an intrinsic iteration. Memory map-
ping is to assign each software iteration to a memory address (base
address and strides) for each operand in the memory abstraction.

Θ =< Compute-Map : C, Memory-Map : M >

C = {Software[®𝑠 ] → Intrinsic[ ®𝑖, ®𝑗1, ..., ®𝑗𝑀 ] }

M = {Software[®𝑠 ] → operand[ ®𝑎𝑑𝑑𝑟 ] }
for each operand in memory abstraction

Explanation: To map software to spatial accelerators through in-

trinsics, we have to know how each scalar operation defined in soft-

ware is implemented by corresponding compute/memory intrinsics.

Based on the compute/memory abstraction, the original intrinsics

are split into a series of scalar operations so that the compilers can

establish a mapping relationship between software iterations and

intrinsic iterations. Apart from the mapping for computation, the
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for {n, k, p, q} in domain{1, 4, 2, 2}:
for {c, r, s} in domain{1, 3, 3}:

out[n, k, p, q] += image[n, c, p+r, q+s] 
* weight[k, c, r, s] 

𝑖1 ← (n * 4 + p * 2 + q)
𝑖2 ← (k)
𝑟1 ← (c * 9 + r * 3 + s)

𝑎𝑑𝑑𝑟𝑎 ← 0
𝑎𝑑𝑑𝑟𝑏 ← 0
𝑎𝑑𝑑𝑟𝑐 ← 0

𝑠𝑡𝑟𝑖𝑑𝑒𝑎 ← 9
𝑠𝑡𝑟𝑖𝑑𝑒𝑏 ← 4
𝑠𝑡𝑟𝑖𝑑𝑒𝑐 ← 4

a) 2D convolution software

b) Software iterations

{n, k, p, q, c, r, s}

e) Virtual compute mapping

f) Virtual memory mapping

*

image weight

*

image

weight

One 4 × 9 × 4 matrix multiplication

trailing padding

2 × 2 × 5 small 2 × 2 × 2 matrix multiplicationsOriginal computation definition

𝑖1 ← (n * 4 + p * 2+ q) mod 2
𝑖2 ← (k) mod 2
𝑟1 ← (c * 9 + r * 3 + s) mod 2

𝑎𝑑𝑑𝑟𝑎 ← (n * 4+ p * 2 + q) / 2 * 20 + (c * 9 + r * 3 + s) / 2 * 4 
𝑎𝑑𝑑𝑟𝑏 ← (c * 9 + r * 3 + s) / 2 * 8 + (k) / 2 * 4
𝑎𝑑𝑑𝑟𝑐 ← (n * 4 + p * 2 + q) / 2 * 8 + (k) / 2 * 4
𝑠𝑡𝑟𝑖𝑑𝑒𝑎 ← 2
𝑠𝑡𝑟𝑖𝑑𝑒𝑏 ← 2
𝑠𝑡𝑟𝑖𝑑𝑒𝑐 ← 2

g) Physical compute mapping

h) Physical memory mapping

image weight

𝑖1

𝑖2

𝑟1

n
k
p
q
c
r
s

d) Iteration Matching

software
iterations

intrinsic
iterations

remapping
according to

intrinsic
iteration
ranges

𝑖1: 0,2 ,
𝑖2: 0,2 ,
𝑟1: [0,2)

Virtual Mapping Physical Mapping

c) Intrinsic iterations

{𝑖1, 𝑖2, 𝑟1}

lo
ad
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m

p
u

te

st
o

re

i) Virtual Accelerator 
without Constraints

j) Constraints:
1. Buffer capacity
2. Intrinsic 

problem size

Figure 3: Mapping generation flow. This example maps a small 2D convolution to Tensor Core (simplified to 2× 2× 2multiplica-
tion). Part a): Software description. Part b): software iterations for 2D convolution. Part c): intrinsic iterations for Tensor Core.
Part d) Iteration matching between software iterations and intrinsic iterations. Part e) and f): virtual compute and memory
mapping without consideration for constraints of intrinsics. Part g) and h): physical compute and memory mapping with
consideration for intrinsic constraints. Part i): virtual accelerator illustration. Part j): constraints in mapping.

mapping for memory access is also feasible. In memory abstraction,

the access indices for each operand within different memory scopes

are explicitly specified. If we can associate each software iteration

with an array of access indices for each operand, then the memory

access addresses can be automatically generated. In the following,

we will explain how to generate software-hardware mappings and

select a high-performance valid mapping for code generation with

intrinsics automatically.

5 MAPPING GENERATION, VALIDATION, AND
EXPLORATION

5.1 Software-Hardware Mapping Generation
To generate the mapping defined Section 4.3, we propose a two-step

approach. First, we map software iterations to a virtual accelerator

that has only one load engine, one compute engine, and one store

engine as illustrated in Figure 3 part i). The memory capacity and

computation ability are not modeled at this step. Second, we add

the constraints of hardware and intrinsics back and modify the

previous mapping to output a physical mapping that can be di-

rectly implemented by hardware intrinsics. To explain the mapping

generation flow, we use Figure 3 as a running example. Although

this example uses 2D convolution and a simplified Tensor Core

(designed for 2 × 2 × 2 matrix multiplication) for illustration, our

flow is general and can be used for other workloads and intrinsics.

For the first step, AMOS assumes the virtual accelerator can load

data of arbitrary volume into on-chip registers and has enough

hardware resources to perform all the computations at once. So

the main problem for this step is how to place software-defined

scalar operations into corresponding intrinsic-provided computa-

tion slots. In other words, it is to match between software iterations

and intrinsic iterations. In Figure 3 part d) we show a matching

example that matches software iterations n, p, q with intrinsic

iteration 𝑖1, software iterations k with intrinsic iteration 𝑖2, and

software iterations c, r, swith intrinsic iteration 𝑟1. According to this
matching, the original 2D convolution (batch=1, input channel=1,

output channel=4, height=4, width=4, kernel size=3) is reformed to

an equivalent matrix multiplication (height=4, reduction length=9,

width=4). And the virtual accelerator is expected to load two matri-

ces (of shape 4 × 9 and 9 × 4) into registers, complete the 4 × 9 × 4
matrix multiplication simultaneously, and store the output matrix

to global memory. The base addresses in memory mapping are set

to zeros and the strides are set according to the matrix shape as

shown in Figure 3 part e) and f) because all the data is assumed to

reside in registers. However, virtual mapping is unrealistic because

real accelerators are constrained in terms of buffer capacity and

computation resources. So we need to take these constraints into

consideration in the next step.

For the second step, two kinds of constraints are considered:

intrinsic problem size and memory capacity. The hardware accel-

erator can only compute a fixed size of results at a time, which is

called problem size constraint. AMOS limits the range of matched

software iterations to the intrinsic problem size by modulo oper-

ations. The problem size of an intrinsic can be extracted from its

indices range, which is represented in the compute abstraction. In

Figure 3 part g), the matched software iterations are restricted by

factors 2 (mod 2) because the problem size of the example Tensor

Core is 2 × 2 × 2.
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Algorithm 1:Mapping Validation Algorithm

input :Software Access Matrix: 𝑋

input : Iteration Matching Matrix: 𝑌

input : Intrinsic Access Matrix: 𝑍

output :validity (True or False)

1: //★ is binary matrix multiplication;

2: 𝑋 ′ := 𝑍 ★𝑌 ; // get software access relationship;

3: 𝑍 ′ := 𝑋 ★𝑌𝑇
; // get hardware access relationship;

4: return (𝑋 ′ = 𝑋 ) and (𝑍 ′ = 𝑍 )

For the constraint of memory capacity, each register fragment

in a spatial accelerator is only able to hold a limited size of data.

Therefore, AMOS splits the whole input/output data into small

slices and load/store these slices of datamultiple times, whichmeans

that the base addresses and strides in virtual memory mapping

should be updated correspondingly. To do this, AMOS uses the

remaining software iterations that are not mapped to intrinsic

iterations to locate the index of sub-slices of data and generates the

base addresses for physical memory mapping. As for the strides,

they are no longer set by the shape of the total data, but by the

register capacity. In the example of Figure 3, one fragment of Tensor

Core could only hold one 2 × 2 matrix for each operand (image,

weight, and out). In part h), (𝑛 ∗ 4 + 𝑝 ∗ 2 + 𝑞)/2 corresponds to

the iterations that are not mapped to intrinsic iteration 𝑖1 and

(𝑐 ∗9+𝑟 ∗3+𝑠)/2 corresponds to the iterations that are not mapped

to intrinsic iteration 𝑟1. So these two remaining iterations are used

to locate the index of sub-matrices of the image (by setting the

value of 𝑎𝑑𝑑𝑟𝑎). Note that we write the base addresses in a flattened

manner (𝑛 ∗ 4 + 𝑝 ∗ 2 +𝑞)/2 ∗ 20 + (𝑐 ∗ 9 + 𝑟 ∗ 3 + 𝑠)/2 ∗ 4, where 4 is
the number of elements within a sub-matrix and 20 = 5 × 4 means

that 5 sub-matrices are grouped together (as shown in Figure 3).

Finally, AMOS should handle the trailing padding problem. In this

example, a 4 × 9 matrix is split into 2 × 5 small 2 × 2 sub-matrices,

so there exist trailing data in sub-matrices. AMOS will pad zeros to

these trailing sub-matrices during mapping generation.

5.2 Software-Hardware Mapping Validation
However, some of the generated mappings may not be valid, and

AMOS uses a validation algorithm to ensure that only the valid

mapping candidates are considered. For example, if we map soft-

ware iterations 𝑛, 𝑘 to the same intrinsic iteration 𝑖1 in Figure 3 part

d), we will get a wrong mapping even though the hardware related

constraints are satisfied. The reason is that software iterations 𝑛

and 𝑘 have different semantics in the original 2D convolution: 𝑛

is the common index of output and image but never appears in

weight, while 𝑘 is the common index of output and weight but

never appears in the image. So they should not be mapped to the

same intrinsic iteration.

Our validation algorithm is shown in Algorithm 1. We first ex-

plain the inputs of the algorithm. Access matrix is a binary-value

matrix that describes the data access relationship between indices

and tensors (or data arrays). Each row of the matrix represents a

tensor and each column represents an index. If an index at column

𝑐𝑜𝑙 is used to access the data of a tensor at row 𝑟𝑜𝑤 , then the corre-

sponding value at position (𝑟𝑜𝑤, 𝑐𝑜𝑙) of the access matrix is set to

1, otherwise, it is 0. As for the matching matrix, it is a binary-value

matrix that describes the matching relationship between software

Access Matrix for 
2D Convolution:

1 0 1
0 1 0
1 1 1out

weight
image

n k p

1 1 1
0 1 1
1 0 0

1
1
0

q c r s

1 0 1
0 1 0
0 0 0𝑟1

𝑖2

𝑖1

n k p

1 0 0
0 0 0
0 1 1

0
0
1

q c r s

Matching Matrix:

𝑋 𝑌

Access Matrix for 
Intrinsic:

1 0 1
0 1 1
1 1 0Dst

Sr𝑐2

Sr𝑐1

𝑖1 𝑖2 𝑟1

𝑍

Figure 4: Example of access matrix and matching matrix.

Table 3: a) Schedule optimizations used by AMOS. b) Symbols
used in performance model.

a) Optimization Explanation
tile split and reorder loop nests

fuse fuse two sub-loops into a large loop

bind bind loops to parallel cores

parallel use multi-threading

cache use shared buffers

unroll/vectorize unroll/vectorize to increase parallelism

b) Symbol Meaning
L𝑙 Latency of computation on level 𝑙

R𝑙 Latency of data load on level 𝑙

W𝑙 Latency of data store on level 𝑙
®𝑆𝑙 sequential loops (not bound to threads) for level 𝑙

DataIn𝑙 amount of data read for the 𝑙-level memory

DataOut𝑙 amount of data write from the 𝑙-level memory

in_bw𝑙 bandwidth of data load of level 𝑙 memory

out_bw𝑙 bandwidth of data store of level 𝑙 memory

iterations and intrinsic iterations. For example, in Figure 4 we show

the access matrix of 2D convolution, Tensor Core compute intrinsic,

and the matching matrix between them. The matching relationship

reflected in this matching matrix is the same as shown in Figure 3

part d). These binary matrices carry important access and matching

information that is necessary for validation.

Algorithm 1 validates the mappings by checking the software

access relationship and the hardware access relationship. Software

access relationship defines which software iterations access which

hardware memory (registers); and hardware access relationship

defines which intrinsic iterations access which software-defined

tensors. To do this, the algorithm first uses intrinsic access matrix 𝑍

and matching matrix 𝑌 to calculate the software access relationship

by 𝑍 ★𝑌 , which is represented by another binary matrix 𝑋 ′. We

use ★ to represent matrix multiplication operation between binary-

value matrices. If 𝑋 ′ is the same as 𝑋 , then it means that for every

pair of input/output tensor (in software definition) and input/output

operand (in intrinsic), the access behavior remains the same for all

the indices, otherwise, the semantics are not preserved. Similarly,

the algorithm then calculates the hardware access relationship by

𝑋 ★𝑌𝑇 , where 𝑋 is the software access matrix. The result 𝑍 ′ is also
a binary matrix and is expected to be the same as intrinsic access

matrix 𝑍 if the matching matrix 𝑌 is valid. Algorithm 1 is efficient

and accurate for validating the software-hardware mapping. AMOS

leverages this algorithm to guarantee that the generated mappings

preserve original semantics in software. For the example in Figure 3,

AMOS finds that only 35 mappings are valid out of 3
7 = 21087

possible candidates.
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5.3 Exploration of Mapping and Schedule
So far, we can select the valid software-hardware mappings. How-

ever, it is hard to know the performance of these mappings when

optimized with optimization schedules such as tiling and paral-

lelization. We show the schedule optimizations AMOS considers in

Table 3 part a). These different optimization schedules combined

with different software-hardware mappings vary in performance as

they are different in resource utilization (compute cores and mem-

ory units). The combined search space of schedules and mappings

is large (usually more than 10
5
). This huge space makes exhaustive

exploration infeasible. We thus adopt a combination of performance

model and tuning techniques for efficient schedule and mapping

exploration. Considering the spatial accelerators are designed in

hierarchy, our performance model is also built level by level (level

0 corresponds to intrinsics). The explanation of used symbols is

listed in Table 3 part b). The performance model can be written as

Perf = L𝐿−1, 𝐿 is the number of levels of hardware

L𝑙 =


(
∏
®𝑆𝑙 ) ×max(L𝑙−1, R𝑙−1,W𝑙−1), 𝑙 > 0

(
∏
®𝑆𝑙 ) × latency_of_intrinsic, 𝑙 = 0

R𝑙 =
DataIn𝑙

in_bw𝑙

W𝑙 =
DataOut𝑙

in_bw𝑙

The maximum of compute latency, read latency, and store latency

dominates the overall latency (fully pipelined execution), and the

compute latency is either the latency of inner level computation

(level 𝑙 − 1) or the latency of intrinsic (if 𝑙 = 0). The latency of

intrinsic is a fixed value, which can be estimated through hardware

models such as Maestro [28] and TENET [33]. The final latency

is multiplied by the trip counts of sequential loops because these

loops are not bound to parallel cores and execute in sequential

order. DataIn and DataOut can be calculated by inferring the size

of buffers used in computation. Compilers such LLVM [29] and

TVM [9] have already provided mature tools for bound inference

and we omit the details here.

We integrate this performance model with existing optimization

frameworks [10, 68, 70] to explore the combined search space of

mappings and optimization schedules. We choose to use genetic

algorithms in tuning engine as it is reported to produce the state-

of-the-art performance [68]. In details, at the beginning of tuning,

AMOS enumerates all the possible mappings through our mapping

generation and validation process and randomly assigns different

schedule parameters to each mapping candidate. Then these map-

pings along with their schedules are evaluated by our performance

model. According to the evaluated results, AMOS chooses a set of

good mappings and mutates their schedules to produce new choices

to evaluate. This process may repeat thousands of times, and the

final result is a pair of good mapping and schedule parameters,

which can be used for final code generation.

6 IMPLEMENTATION OF AMOS
The hardware abstraction is implemented as compiler IR on top of

some basic IR nodes in Table 4. We add two new IR nodes (Compute
and Memory). Compute and Memory nodes can express all the

information required by our compute and memory abstraction

introduced in previous sections. A Compute node represents a small

loop nest that matches with a compute intrinsic. Similarly, Memory

Table 4: IR nodes used by AMOS.

Basic IR Node Explanation
Expr represent arithmetic expressions (+,-,*,/, etc.)

BufferLoad multi-dim load operation from a buffer

Tensor represent an n-dim data buffer

Array pack a list of IR nodes into an array

String represent a string data node

New IR Node Semantics
Compute Compute(Tensor, Expr, Array<Expr>)

Memory Memory(Tensor, String, BufferLoad)
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Figure 5: Model validation results on Tensor Core GPU using
2D convolution workload.

nodes represent memory load/store operations and correspond to

memory intrinsics. These IR nodes have specific attributes as shown

in Table 4. For Compute node, the first attribute is the destination
buffer to store the computation results, which is represented by a

Tensor node. The second attribute is an expression describing the

concrete arithmetic operations (addition, multiplication, etc.). We

use an Expr node to represent the expression. The third attribute

of the Compute node is used to represent the intrinsic iterations

as illustrated in compute abstraction. We use an Array of Expr
nodes to represent this attribute. As for Memory node, the first

attribute is the destination buffer of memory access operations.

The second attribute is a String node that is used to encode buffer

scope information (global, shared, or register). The third attribute

is a BufferLoad node used to represent the source buffer and load

indices. AMOS uses the IR to express hardware intrinsics and reuse

the tensorize interface of TVM[9] to insert these nodes into the

compiler abstract syntax tree during lowering and code generation.

7 EXPERIMENTAL RESULTS
7.1 Evaluation Setup
We first evaluate AMOS using three commercial spatial acceler-

ators and their intrinsics include mma_sync in TensorCore GPU

(V100 [46] and A100 [40]), _mm512_dpbusds_epi32 in Intel CPU

with AVX-512 (Xeon(R) Silver 4110), and arm_dot in Mali Bifrost

GPU ( G76 [3]). In addition, we also evaluate AMOS using new

spatial accelerator designs and intrinsics.

For evaluation, we first validate the accuracy of AMOS’s per-

formance model. Then we evaluate AMOS on Tensor Core GPUs

for single operators and entire DNN networks. After that, we eval-

uate AMOS on AVX-512 CPU and Mali GPU for convolution. At
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Table 5: SW-HW mappings found by AMOS for each C2D layer in ResNet-18 on A100 GPU. 𝑛, 𝑘, 𝑝, 𝑞, 𝑐, 𝑟, 𝑠 are batch, output
channel, height, width, input channel, kernel height, and kernel width. We only show the compute mappings due to space
limit.

Layer 𝑛 𝑐 𝑘 𝑝 𝑞 𝑟 𝑠 stride SW-HWmapping (compute mapping only)
C0 16 3 64 112 112 7 7 2 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑛 ∗ 112 + 𝑞) mod 16, 𝑘 mod 16, (𝑐 ∗ 49 + 𝑟 ∗ 7 + 𝑠) mod 16]
C1 16 64 64 56 56 3 3 1 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑛 ∗ 56 + 𝑞) mod 16, 𝑘 mod 16, (𝑐 ∗ 3 + 𝑟 ) mod 16]
C2 16 64 64 56 56 1 1 1 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑝 ∗ 56 + 𝑞) mod 16, 𝑘 mod 16, 𝑐 mod 16]
C3 16 64 128 28 28 3 3 2 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑛 ∗ 784 + 𝑝 ∗ 28 + 𝑞) mod 16, 𝑘 mod 16, (𝑐 ∗ 3 + 𝑠) mod 16]
C4 16 64 128 28 28 1 1 2 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑝 ∗ 28 + 𝑞) mod 16, 𝑘 mod 16, 𝑐 mod 16]
C5 16 128 128 28 28 3 3 1 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑝 ∗ 28 + 𝑞) mod 16, 𝑘 mod 16, 𝑐 mod 16]
C6 16 128 256 14 14 3 3 2 [𝑖1, 𝑖2, 𝑟1 ] ← [𝑛 mod 16, 𝑘 mod 16, (𝑐 ∗ 3 + 𝑠) mod 16]
C7 16 128 256 14 14 1 1 2 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑛 ∗ 196 + 𝑝 ∗ 14 + 𝑞) mod 16, 𝑘 mod 16, 𝑐 mod 16]
C8 16 256 256 14 14 3 3 1 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑝 ∗ 14 + 𝑞) mod 16, 𝑘 mod 16, 𝑐 mod 16]
C9 16 256 512 7 7 3 3 2 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑛 ∗ 49 + 𝑝 ∗ 7 + 𝑞) mod 16, 𝑘 mod 16, (𝑐 ∗ 9 + 𝑟 ∗ 3 + 𝑠) mod 16]
C10 16 256 512 7 7 1 1 2 [𝑖1, 𝑖2, 𝑟1 ] ← [(𝑛 ∗ 49 + 𝑝 ∗ 7 + 𝑞) mod 16, 𝑘 mod 16, 𝑐 mod 16]
C11 16 512 512 7 7 3 3 1 [𝑖1, 𝑖2, 𝑟1 ] ← [𝑛 mod 16, 𝑘 mod 16, (𝑐 ∗ 9 + 𝑟 ∗ 3 + 𝑠) mod 16]
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Figure 6: Part a) and b): single operator performance relative to PyTorch. Part c): performance comparison for C2D on A100
relative to CuDNN.

last, we show the results of AMOS on new hardware architec-

tures. We compare to PyTorch [48], CuDNN [42], Ansor [68], Au-

toTVM [10], UNIT [58], and AKG [67] for performance. For bench-

marks, we use DNNs from both image processing and natural lan-

guage processing. They include ShuffleNet [65], ResNet-18 and

ResNet-50 [20], MobileNet-V1 [22], Bert [15] (base configuration),

and MI-LSTM [59]. AMOS is fully automatic and the only inputs are

software descriptions in DSL, while other compilers need templates

as additional inputs. We will explain the details in Section 7.3.

7.2 Model Validation
We validate AMOS’s performance model using Tensor Core GPU.

We set the configurations of V100 GPU according to the specifica-

tions [26, 46], including the number of SM, the number of sub-core

within one SM, memory size, and evaluated bandwidth. We use 2D

convolution layers from ResNet-18 and compare the ground-truth

performance with model predicted performance for different explo-

ration steps in Figure 5. We also show the pairwise (rank) accuracy

(green line) and recall value for top-40% mappings (red line) in the

figure. For each exploration step, the predicted performance is close

to real performance in trend (not in absolute value). The pairwise

accuracy shows that AMOS can predict the relative performance

of explored mappings with good precision (the overall accuracy is

85.69%. The top-40% recall value shows that AMOS can retrieve the

top 40% mappings with a high probability (overall recall is 91.4%).

We also show the recall results under different top rates in Figure 5.

The results indicate that AMOS can retrieve promising mappings

during exploration with a probability of more than 80% for top

rate lager than 30%. Based on this performance model, AMOS can

successfully filter out the inferior mappings and only select the

promising mappings for exploration.

7.3 Evaluation for Operators on Tensor Core
For single operators, we consider GEMV (GMV), GEMM (GEM), 1D

convolution (C1D), 2D convolution (C2D), 3D convolution (C3D),

transposed 2D convolution (T2D), group convolution [23] (GRP), di-

lated convolution (DIL), depthwise convolution [12] (DEP), capsule

convolution [21] (CAP), batched convolution [61] (BCV), grouped

fully-connected layer [35] (GFC), matrix mean and variance (MEN

and VAR), and scan computation [13] (SCN). We test 113 different

configurations (7-8 for each operator on average) for all the opera-

tors and report the geometric mean speedup to baselines. All the

configurations are extracted from real-world networks [7, 15, 20,

21, 35, 50, 61].

First, we compare AMOS with PyTorch. PyTorch uses hand-

optimized libraries such as CuDNN [42], CuBlas [41], and CUT-

LASS [43] to support different kinds of operators. We show the

results of all the operators for batch 1 on V100 and A100 GPU in Fig-

ure 6 part a) and b). AMOS consistently exceeds PyTorch for all the

operators and achieves 2.50× and 2.80× geometric mean speedup on

V100 and A100, respectively. AMOS generates high-performance

code on different platforms via a combined exploration of both
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mappings and schedules. AMOS achieves speedup because of the

comprehensive software-hardware mapping exploration, while Py-

Torch only uses fixedmappings implemented in the hand-optimized

libraries, which gives a sub-optimal performance.

Second, we compare to state-of-the-art compilers. We use C2D in

NCHW layout for performance evaluation. We use all the convolu-

tion layers from ResNet-18 [20] (totally 12 different configurations)

and use C0-C11 to represent them (see Table 5). The results are

shown in Figure 6 part c). AMOS achieves the best average perfor-

mance among all the compilers (2.38× to CuDNN, 1.79× to Ansor,

1.30× to AutoTVM-Expert, 4.96× to UNIT). AKG[67] only maps

a few layers to Tensor Core because its polyhedral model is not

designed for intrinsics and fails to recognize opportunities to map

convolutions to Tensor Core. Ansor[68] has no code generation

rules for Tensor Core. So it can’t use Tensor Core for all the layers.

When these compilers fail to use Tensor Core, they will use CUDA

Core instead. But different compilers use different optimization

techniques. Therefore, their performance on CUDA Core is also

different. UNIT’s template always maps the height and width di-

mensions of C2D to Tensor Core intrinsic and ignores the batch

dimension, which suffers from low parallelism and thus is much

slower than AMOS. AutoTVM [10] fails in recognizing opportu-

nities to use Tensor Core intrinsics because its hand-written tem-

plates are only designed for NHWC/HWNC layouts. NCHW layout

is widely adopted by frameworks such as PyTorch, but NHWC is

also a desirable layout for certain cases[44]. AMOS is not restricted

to any specific layout. Therefore, we also compare C0 with NHWC

layout to AutoTVM and the speedup is 2.83×. We also evaluate

AutoTVM by manually adding a new template for NCHW layout

with FP16 precision (denoted as AutoTVM-Expert). But the overall

performance is still inferior to AMOS because the template adopts

a fixed mapping strategy, while AMOS can systematically explore

a large space of mappings for C2D.

AMOS finally chooses 8 different types of mappings for the 12

convolution layers (shown in Table 5). For example, the mapping

for C7 maps iterations 𝑛, 𝑝 , 𝑞 to 𝑖1, and maps iteration 𝑐 to 𝑟1. Other

compilers can not use this mapping because their templates are

fixed. For example, the template of UNIT only maps iterations 𝑝 , 𝑞

to 𝑖1. AMOS’ mapping for C9 is the same as that shown in Figure 3

part d); mapping for C5 is the same as that used by UNIT’s template.

All these mappings are automatically generated by AMOS.

7.4 Evaluation for Networks
AMOS can enable more operators to be mapped to Tensor Core and

find better mappings for these operators compared to hand-tuned

libraries and templates. We use batch size 1 and 16 for performance

comparison of full networks. The results are shown in Figure 7 part

a) to d). Bert of batch size 16 on V100 is not shown due to memory

limit exceeding. AMOS exceeds PyTorch for all the benchmarks

except for Bert with batch size 16 on A100 (speedup ranges from

0.91× to 10.42×). Bert is mainly composed of GEMM. And GEMM

is highly optimized in libraries [41, 43] for decades. Even so, for

batch size 16, AMOS still achieves more than 90% the performance

of libraries. The significant speedup of ShuffleNet comes from the

acceleration for group convolution (GRP) and depthwise convolu-

tion (DEP), which are not well supported by hand-tuned libraries

on Tensor Core.

We also compare to UNIT and TVM for the whole network with

different batch sizes. We use ResNet-18 ,ResNet-50, and MobileNet-

V1 for comparison. Figure 7 part e) shows the results on A100. For

most of the test cases, AMOS gets the best performance equally.

For ResNet, the speedup arises from both normal convolutions and

strided convolutions. The strided convolutions are hard to map to
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Table 6: Number of feasible mappings on Tensor Core.

GMV GMM C1D C2D C3D T2D GRP DIL
1 1 6 35 180 7 35 35

DEP CAP BCV GFC MEN VAR SCN
11 105 11 1 1 1 1

Tensor Core because the strides in tensor access index make it hard

to generate memory access addresses during compilation and TVM

doesn’t use Tensor Core intrinsics for them. And UNIT’s template

doesn’t consider batch dimension during mapping, its performance

is inferior to TVM and AMOS. The results show that the map-

ping generation logic of AMOS can handle different sophisticated

operators and leverage Tensor Core to get high performance.

7.5 Evaluation On Other Accelerators
Vector Units in Intel CPU: On Intel CPU, we add hardware ab-

straction for AVX-512 VNNI intrinsics (for matrix-vector multipli-

cation) and use AMOS to generate code for C2D. We compare with

TVM and TVM uses a hand-written template to generate VNNI

intrinsics. Figure 8 part a) shows the results. C0-C11 refers to C2D

layers in Table 5. AMOS outperforms TVM for all the cases except

for C2. On average, the speedup to TVM is 1.37×.
Dot Units in Mali GPU: On Mali GPU (Bifrost architecture [3]),

We add hardware abstraction for dot intrinsics in AMOS and com-

pare to AutoTVM. The configurations of C2D and DEP are from

MobileNet-V2 [51] (totally 7 depthwise layers). AutoTVM uses a

hand-written template for Bifrost architecture. The experiment re-

sults show that the templates of AutoTVM are less optimized for dot

intrinsic and for some layers of DEP (layer 2, 3, and 4), AutoTVM

even can’t generate code due to internal errors. As a result, the final

performance of AutoTVM is much lower than AMOS. The absolute

performance (GOPS) is shown in Figure 8 part b). The speedup of

AMOS is up to 25.04×.
New Accelerators: To show the generality of AMOS, we use three

virtual spatial accelerators, which offer different intrinsics for com-

pute and memory. We choose three intrinsics for AXPY, GEMV, and

CONV because they correspond to the three levels of BLAS [16] op-

erations (GEMM is demonstrated in Tensor Core, so we use a more

complex pointwise convolution for level 3). We add the hardware

abstractions for these intrinsics in AMOS. We use C3D as input

software. AMOS can find 15, 7, and 31 different types of mappings

for the AXPY accelerator, GEMV accelerator, and CONV accelerator,

respectively. For example, one mapping for the CONV accelerator

maps output channel, height, width, and input channel to the con-

volution units. This experiment shows that AMOS is applicable to a

new generation of accelerators with different intrinsics and proves

the generality of our proposed techniques in this paper.

7.6 Discussion
The improvement over state-of-the-arts are from two folds: 1)

AMOS enables systematic exploration of the mapping space; 2)

AMOS allows flexible mapping for better performance.

First, we show the number of feasible mappings found by AMOS

for different workloads in Table 6. These different mappings are

different in how the iterations are mapped to Tensor Core in hard-

ware abstraction. For example, AMOS can generate 180 different
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Figure 9: Comparison of CuDNN, AMOS-fixM1, AMOS-fixM2,
and AMOS.

mappings for C3D, some of which require sophisticated transforma-

tion. For example, some mappings transform the 3D convolution

to 2D matrix multiplication by mapping channel dimensions and

image height/width/depth dimensions to Tensor Core, while other

mappings first transform the 3D convolution to a series of 2D con-

volutions and then transform these 2D convolutions to 2D matrix

multiplications to map to Tensor Core.

Second, AMOS enables flexible mappings for different input

shapes, but hand-tuned libraries and template-based compilers al-

ways resort to fixed mappings. To illustrate this, we use the C2D lay-

ers listed in Table 5 and compare AMOS with hand-tuned CuDNN

library and fixed mappings. We use AMOS to generate two fixed

but representative mappings: AMOS-fixM1 (use a fixed im2col map-

ping) and AMOS-fixM2 (use a fixed fuse_hw mapping). AMOS-

fixM1 maps iterations 𝑐, 𝑟, 𝑠 together to Tensor Core dimension 𝑟1
and maps iterations 𝑛, 𝑝, 𝑞 to Tensor Core dimension 𝑖1. AMOS-

fixM2 only maps iteration 𝑐 to 𝑟1 and maps 𝑝, 𝑞 to 𝑖1. The im2col

mapping is widely used in CuDNN and the fuse_hw is used in

UNIT[58]. For a fair comparison, AMOS-fixM1 and AMOS-fixM2

have the same schedule exploration (e.g., tiling factors) capability

as AMOS but use fixed templates to map the iterations to Tensor

Core[10, 58].

Overall, compared to AMOS, the performance of AMOS-fixM1

and AMOS-fixM2 drops by 36.8% and 31.9%, respectively. For exam-

ple, for layer C3, the AMOS-fixM1 and AMOS-fixM2 are inferior to

AMOS because they launch too many threadblocks, which results

in high wave counts per SM. As for CuDNN, its parallelism is low

because of low threadblocks numbers. Moreover, CuDNN maps all

the iterations 𝑐, 𝑟, 𝑠 to Tensor Core, which requires a large slice of

shared memory to store input data. AMOS only maps 𝑐, 𝑠 to Tensor

Core and splits the matrix multiplication within one warp into

three steps, where shared memory can be reused and the resource

pressure is alleviated. As a result, the occupancy of AMOS is higher

than CuDNN (3.66×).

8 RELATEDWORK
Using Accelerators with Hand-optimized Libraries. Nvidia
GPU libraries such as CuDNN [42], CuBlas [41], and CUTLASS [43]

are developed to use Tensor Core for GEMM and convolution. On

CPUs, oneDNN [25] leverages special instruction sets such as AVX-

512 to perform high-performance computation. These libraries are

implemented by manual optimization and tuning, which require

months or even years to develop. Deep learning frameworks such as
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PyTorch [48], TensorFlow [1], and MXNet [8] rely on these libraries

to deploy DNNs.

Hardware-aware Mapping: Recent compilers/mappers such

as Timeloop [47], dMazeRunner [14], Triton [54], CoSA [24], SARA

[66], and HASCO [60] can map software to spatial hardware with

consideration for hardware constraints such as PE connection and

memory capacity. These compilers leverage the hardware informa-

tion to analyze the quality of mappings and usually formulate the

mapping problem as a linear programming problem. They are suit-

able for hardware visible scenarios where hardware architectures

are fully exposed to compilers. In this paper, we focus on another

scenario where hardware details are not fully exposed and only

programmable intrinsics are available (ISA-aware).

ISA-aware Mapping: For accelerators that only expose intrin-

sics to compilers, the mapping problem is called ISA-aware map-

ping. Halide [49] introduces the concept of compute and schedule
to represent software and optimization, while TVM [9] generalizes

the concept and allows users to use tensorize primitive to lower

part of software to spatial accelerators manually. Automatic sched-

ulers such as Halide Scheduler [2, 30, 38], FlexTensor [70], Pro-

Tuner [19], ALT [63], Rammer [34], NeoFlow [69], and Ansor [68]

focus on general-purpose hardware and ignore the mapping prob-

lem for spatial accelerators such as Tensor Core. Polyhedral model

is widely used in compilers for constrained optimization [5, 56, 57].

Recent works such as Tensor Comprehensions [55], Stripe [64],

Tiramisu [4], PolyDL [53], and AKG [67] use polyhedral model to

generate code for deep learning models. To generate code for spatial

accelerators with intrinsic, existing compilers rely on hand-written

templates. Typical examples include XLA [18], AutoTVM [10], ISA

Mapper [52], and UNIT [58]. Their templates are hard to develop,

which limits the range of supported operators for real applications.

A recent compiler VeGen [11] can automatically generate templates

for intrinsics on Intel CPU for AVX-512, but it doesn’t consider other

spatial accelerators and the approach is hard to generalize. In this

paper, the proposed framework AMOS can automatically explore

various valid mappings for different spatial accelerators without

templates or libraries and achieve high performance.

9 CONCLUSION
Spatial accelerators enable additional performance improvement

possibilities for tensor programs. However, the intrinsics exposed

by these accelerators are hard to use. Existing approaches including

hand-tuned libraries and template-based compilers rely on fixed

manually written templates to optimize code, which leads to sub-

optimal performance and heavy development cost. In this paper,

we propose AMOS, which is a compilation and optimization frame-

work for spatial hardware accelerators. AMOS proposes a novel

hardware abstraction to represent the intrinsics of the accelerators.

This enables systematic exploration of mapping space and flexible

mapping with better performance for various tensor kernels. In

experiments, AMOS achieves significant speedup on Tensor Core,

AVX-512 CPU, and Mali GPU compared to the state of the art.
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