
Chimera: An Analytical Optimizing Framework for

Effective Compute-intensive Operators Fusion

Size Zheng1, †, Siyuan Chen1, †, Peidi Song1, Renze Chen1, Xiuhong Li2, 4, Shengen Yan2,

Dahua Lin3, 4, Jingwen Leng5, Yun Liang1, 6, *

1Peking University, 2Sensetime Research, 3The Chinese University of Hong Kong,
4 Shanghai AI Lab, 5Shanghai Jiao Tong University, 6Beijing Advanced Innovation Center for Integrated Circuits

{zhengsz, chensiyuan, ppppaidy, crz, ericlyun}@pku.edu.cn, {lixiuhong, yanshengen}@sensetime.com

dhlin@ie.cuhk.edu.hk, leng-jw@sjtu.edu.cn

Abstract—Machine learning models with various tensor opera-
tors are becoming ubiquitous in recent years. There are two types
of operators in machine learning: compute-intensive operators
(e.g., GEMM and convolution) and memory-intensive operators
(e.g., ReLU and softmax). In emerging machine learning models,
compute-intensive operators are usually organized in a chain
structure. With the continual specialization of hardware, the gap
between computing performance and memory bandwidth has
become more prominent. Consequently, the implementations of
many compute-intensive operator chains are bounded by memory
bandwidth, and generating fused kernels to improve locality
for these compute-intensive operators becomes necessary. But
in existing machine learning compilers, there lack both precise
analysis and efficient optimization for compute-intensive operator
chains on different accelerators. As a result, they usually produce
sub-optimal performance for these operator chains.

In this paper, we propose Chimera, an optimizing framework
that can efficiently improve the locality of compute-intensive
operator chains on different hardware accelerators. In Chimera,
each compute-intensive operator is composed of a series of
computation blocks. To generate efficient fused kernels for the
operator chains, optimizations for both inter-block and intra-
block are required. For inter-block optimization, Chimera decides
the optimized block execution order by minimizing the data
movement volume among blocks using an analytical model. For
intra-block optimization, Chimera uses unified replaceable micro
kernels to apply hardware-specific optimizations for different ac-
celerators. Finally, Chimera generates fused kernels for compute-
intensive operator chains. Evaluation of batch GEMM chains and
convolution chains on CPU, GPU, and NPU shows that Chimera
achieves up to 2.87×, 2.29×, and 2.39× speedups to hand-tuned
libraries. Compared to state-of-the-art compilers, the speedups
are up to 2.29×, 1.64×, and 1.14× for CPU, GPU, and NPU.

I. INTRODUCTION

Machine learning models that are composed of various

tensor operators are becoming ubiquitous [13], [16], [17], [19],

[24], [40], [42], [48]. There are two types of tensor operators in

current machine learning models: compute-intensive operators

(such as GEMM and convolution) that account for most of

the computations and memory-intensive operators (such as

ReLU and softmax) that are used to connect compute-intensive

operators. Many previous libraries [1]–[3], [5]–[7], [28], [38]

and compilers [12], [14], [23], [36], [43], [45], [47], [49], [54],

[56], [57], [63] are proposed to optimize these operators.

†Both authors contribute equally to this work.
*Corresponding author.

TABLE I
THE COMPUTE/MEMORY BREAKDOWN OF ML MODELS AND THE

PERFORMANCE OF DIFFERENT ACCELERATORS.

ML Model Breakdown

Name %MI %CI %BMM

Transformer 19.45% 40.51% 40.04%
Bert-Base 30.56% 42.79% 26.65%
ViT-Huge 15.63% 50.85% 33.52%

Compute and Memory Characteristics of Accelerators

Device Xeon Gold A100 Ascend 910

Dedicated Unit AVX-512 Tensor Core Cube Unit
Peak Perf. 12 TFlops 312 TFlops 320 TFlops

Memory BW. 131 GB/s 1555 GB/s 1200 GB/s
Peak Perf/BW 92 Flop/byte 200 Flop/byte 267 Flop/byte

With the continual progress of hardware specialization,

the disparity of speed between dedicated compute cores and

memory outside the chips becomes increasingly prominent.

As a result, many compute-intensive operators are bounded by

memory bandwidth. In Table I we show the FP16 peak com-

pute performance and memory bandwidth of several hardware

accelerators: Xeon Gold AVX-512 CPU, A100 Tensor Core

GPU [4], and Ascend 910 NPU [30]. The high ratio of the peak

performance to the memory bandwidth of these accelerators

indicates that they require high arithmetic intensity to achieve

high performance. For example, to unleash the computing

power of Xeon Gold CPU, at least 92 float operations are

expected for per byte loaded.

Moreover, the gap between compute performance and mem-

ory bandwidth is expected to continue to grow. The memory-

bound implementations of many compute-intensive operators

(e.g., batch GEMM in Transformer) are becoming a perfor-

mance bottleneck. We show the execution time breakdown

of some emerging models in Table I (sequence length is set

to 512). The column %MI refers to the ratio of execution

time that all the memory-intensive operators account for; the

column %CI refers to the ratio of compute-intensive operators

except for the batch GEMMs in attention layers; and the

column %BMM refers to the ratio that the batch GEMMs

(whose implementations are memory-bound) account for. As

shown in the Table, the memory-bound batch GEMMs occupy

a large proportion of execution time (26.65% to 40.04%),

which exceeds that of other memory-intensive operators.

978-1-6654-7652-2/23/$31.00 ©2023 IEEE

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Therefore, optimizations to these memory-bound compute-

intensive operators to improve locality and reduce the pressure

on memory bandwidth are necessary.

Kernel fusion is an effective optimization for memory-

bound operators. However, the compute-intensive operators

in emerging models often form a chain structure with strict

data dependency and thus generating efficient fused kernels

for the compute-intensive operator chains is difficult. First,

it is hard to decide the execution order of the computations

of compute-intensive operator chains. Each operator in the

chain can be decomposed into a series of computation blocks

as pointed in previous works [58], [65]. Different execution

order of these computation blocks can result in different data

movement volume among the blocks and thus the performance

will also change drastically. Existing works [23], [36], [57],

[63], [65] fail to optimize the execution order for compute-

intensive operator chains because they lack a precise per-

formance model to evaluate the data movement volume of

different ordering choices of operators. Second, optimizing

the computations within each block using hardware-specific

features is challenging. There lacks a unified approach for

extensible and flexible micro kernel generation for different

hardware accelerators. Previous works [36], [54], [63] use

fixed micro kernels so they can hardly be generalized to other

hardware accelerators.

In this paper, we present Chimera, an optimization frame-

work for machine learning models that generates fused kernels

for compute-intensive operator chains for high performance.

Chimera decomposes compute-intensive operator chains into

computation blocks and its optimizations then fall into two

aspects: inter-block and intra-block optimization. For inter-

block optimization, Chimera optimizes the block execution

order by minimizing the data movement volume (maximizing

data locality). In detail, Chimera enumerates different block

execution orders and analytically estimates the input/output

data movement volume among blocks. After that, Chimera

selects the execution order that gives the minimal data move-

ment volume so that the optimal data locality is achieved.

Different from previous works [26], [65] that only opti-

mize the block orders within one compute-intensive operator,

Chimera’s optimization is applicable to multiple compute-

intensive operators by considering intermediate result reuse

and interleaving of blocks from different operators. For intra-

block optimization, Chimera applies hardware-specific op-

timizations. To handle hardware diversity, Chimera uses a

unified replaceable micro kernel as a high-level abstraction and

generates low-level micro kernel implementations for different

hardware architectures during code generation. Finally, the

computation blocks from different compute-intensive operators

are interleaved according to the block execution order and

low-level device code is generated by using hardware-specific

micro kernels. In summary, this paper makes the following

contributions:

1) It proposes an analytical model to evaluate the data

movement volume of memory-bound compute-intensive

operator chains.

Input Tensor

MM MM MM

Q K V

BMM

Softmax

BMM

Output Tensor

B
a

tc
h

 G
E

M
M

 C
h

a
in

Input Tensor

Conv3x3

ReLU

Conv1x1

ReLU

Output Tensor

C
o

n
v

o
lu

t
io

n
 C

h
a

in

a) b)

Fig. 1. Typical tensor operators in machine learning. a) batch GEMM chains
from Transformers. b) convolution chains from CNNs.

2) It proposes to use replaceable micro kernels for different

accelerators and uses an analytical approach to optimize

the micro kernels.

3) It achieves better performance than state-of-the-art com-

pilers for different compute-intensive operator chains.

Evaluation of batch GEMM chains and convolution chains

on CPU, GPU, and NPU shows that Chimera achieves up to

2.87×, 2.29×, and 2.39× speedups to hand-tuned libraries [1],

[6], [8]. Compared to state-of-the-art compilers [23], [43],

[54], [56], [57], the speedups are up to 2.29×, 1.64×, and

1.14× for CPU, GPU, and NPU.

II. BACKGROUND AND CHALLENGES

In this section, we first introduce several typical ten-

sor operators in machine learning models including GEMM

chains from Transformers [48] and convolution chains from

CNNs [19], [40]. Then, we explain the major challenges of

generating fused kernels for these operator chains.

A. Tensor Operators in Machine Learning

Current machine learning models are usually constructed

with multiple tensor operators. Unlike previous models that

wrap some memory-intensive element-wise or reduce opera-

tors around one compute-intensive operator such as GEMM

and convolution, recent models tend to assemble multiple

compute-intensive operators together. In Figure 1, we show

two typical examples. In part a) there’s a self-attention layer

that is widely used in Transformer-based models such as

Bert [16] and ViT [17]. The main component of this layer

includes a batch GEMM chain that is composed of two batch

GEMMs and one softmax layer. As shown in Table I in

Section I, the batch GEMM chain occupies a substantial part

of the whole execution time (26.65% to 40.04%). In part b)

there’s a convolution chain that is composed of one 3 × 3
convolution, one 1 × 1 convolution, and two ReLU layers.

The convolution chain is common in CNNs [19], [40]. The

convolutions can also become memory-bound under certain

input shapes (discussed in Section VI).

A C

B
D

E

dim k

d
im

 k

dim l

d
im

 m

d
im

 l
d

im
 m

dim n

No. order A B D E

1 mnkl l - k k,l

2 mnlk - - k k,l

3 mknl n,l - k k,l

4 mkln l,n n k k

5 mlnk - - k k

6 mlkn n n k k

24 lknm - n,m m,k m,k

Reuse Dimension

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

M

K

L

N

Fig. 2. Different block execution orders result in different data reuse (use
GEMM chain as an example).

B. Major Challenges

Here, we present two major challenges in generating effi-

cient fused kernels for compute-intensive operator chains and

explain why previous work can’t address these challenges. We

summarize the comparison of related work in Table II.

1) The execution order of inter-blocks: Compute-intensive

operators can be represented by a series of computation blocks

as pointed out in previous works [58], [65] and the block

execution order is critical to locality optimization. When

fusing chains of compute-intensive operators, the main op-

timization objective is to select the optimal execution order

that maximizes data reuse. We use the GEMM chain example

in Figure 2 (C = A×B,E = C×D) to illustrate the effect of

different execution orders. There are four different dimensions

(m,n, k, l) in the GEMM chain and the two GEMMs are tiled

into multiple computation blocks. The block execution order

can be represented by the ordering of the four dimensions

as shown in the Table in Figure 2. The order mnkl (the first

row) indicates that we execute the blocks along dimension

l first, then dimension k, then dimension n, and finally,

dimension m. Under this execution order, matrix A is reused

along dimension l; matrix B is not reused because when we

traverse the blocks along dimension l, different data blocks

of matrix B are accessed. Matrix C is an intermediate result

and is stored in on-chip memory, so we don’t show its reuse

dimensions. Matrices D and E are always reused along k
dimension because k is private to the first GEMM, which

will not iterate on the computations of the second GEMM.

In addition, the size of each computation block also affects

the final data movement volume. As a result, the optimization

problem should model block decomposition strategy and block

ordering choices together.

Previous works [21], [23], [27], [36], [54], [56]–[58],

[63], [65] only partially solve the problem as shown in

Table II. Ansor [57], TASO [23], DNNFusion [36], MOpt [26],

AStitch [63], and Roller [65] only optimize the block orders

within one compute-intensive operator at a time and fix the

inter-operator order by using expert rules. DNNFusion [36]

classifies compute-intensive operators as the Many-to-Many

mapping type and fails to fuse two or more Many-to-May

operators together because its code generator cannot predict

the benefit of such complex fusion. CoSA [21] uses mixed-

integer programming (MIP) to optimize the total execution

Input

Program
Inter-block

reordering

Intra-block

scheduling

Code

Generation

Block

Decomposition

(Sec. IV-A) (Sec. IV-B, IV-C) (Sec. V-A) (Sec. V-B)

Fig. 3. The overall workflow of Chimera.

cycles without considering the inter-block memory access.

HASCO [53] uses reinforcement learning and Bayesian op-

timization to explore the hardware-software desgin space. But

operator fusion is not in the design space. AKG [56] uses

polyhedral models to improve locality. But the polyhedral

model is a general approach and its optimization space is

too large to explore. As a result, it relies on heuristics to

find solutions, which often gives sub-optimal performance in

practice. Atomic [58] only considers inter-engine data reuse

(e.g., the reuse of matrix C in Figure 2). But the data reuse

from input/output data access also has a great impact on

performance, which is not optimized in Atomic.

2) The intra-block code generation: Scheduling the com-

putation within one block is the core to high-performance

kernel implementation. The instructions within one block

should be scheduled to hide the latency of memory access

and maximize the utilization of the computation pipeline.

Previous works adopt different approaches for intra-block

optimization as shown in Table II. TASO [23], CoSA [21], and

Atomic [58] don’t generate low-level code and they have no

intra-block optimizations. AKG [56] and Ansor [57] use loop

transformations along with tuning methods to generate micro

kernels. But they rely on a general instruction selection logic

(in TVM [14] and LLVM [25]) without utilizing hardware-

specific instructions such as AVX-512 and Tensor Core as

pointed out in previous work [60]. In addition, the tuning

process is expensive because it requires hundreds of hardware

profiling steps to obtain a good performance. DNNFusion [36],

Astitch [63], and BOLT [54] use hand-tuned micro kernels to

optimize a fixed computation pipeline. However, their micro

kernels are tightly coupled with the inter-block optimizations,

making it hard to support new operators or new accelerators.

III. OVERVIEW OF CHIMERA

In this section, we present the overall workflow of Chimera.

As shown in Figure 3, Chimera is composed of four

parts: block decomposition, inter-block reordering, intra-block

scheduling, and code generation. The input of Chimera is a

compute DAG in machine learning (described by domain-

specific language). Each operator in the DAG is firstly de-

composed into a series of computation blocks (Section IV-A).

Then, an optimized block execution order is selected by

resorting to an analytical model (Section IV-B). The analytical

model relies only on the analysis of loop nests of the dense

tensors. Therefore, it is general for different model topology

structures (e.g. different number of tensors or operators). The

original dependencies among the blocks are all preserved so

that all the block orderings selected by Chimera are valid.

After that, intra-block optimization is applied by using re-

placeable micro kernels. Chimera supports different hardware

TABLE II
THE COMPARISON OF PREVIOUS REPRESENTATIVE WORK AND CHIMERA.

Name Codegen
Inter-block Intra-block Supported HW Optimization

Optimization Optimization CPU GPU NPU Methodology

AKG [56] Yes Minimize Reuse Distance Loop Transformation Yes Yes Yes Polyhedral

DNNFusion [36] Yes Template-based Fusion Fixed Micro Kernel Yes Yes No Tuning

TASO [23] No Graph Substitution Rules None No Yes No Tuning

AStitch [63] Partial Kernel Stitching Rules Fixed Micro Kernel No Yes No Rule-based

CoSA [21] No Minimize Compute Cycles None No Yes No MIP

Atomic [58] No Minimize Inter-engine Movement None No No No DP

MOpt [26] Yes Optimize Single-op Locality Fixed Micro Kernel Yes No No Analytical

Roller [58] Yes rProgram Generation Algorithm Generated Micro Kernel No Yes No Cost Model

Ansor [57] Yes Sketch Generation Rules Loop Transformation Yes Yes No Tuning

BOLT [54] Partial Persistent Kernels Fixed Micro Kernel No Yes No Tuning

Chimera (ours) Yes Minimize Data Movement Replaceable Micro Kernel Yes Yes Yes Analytical

backends. For each backend, Chimera registers hardware-

specific micro kernel implementations to a special abstraction

called replaceable micro kernel so that hardware diversity can

be handled in a unified manner (in Section V-A). The details on

the low-level implementations are introduced in Section V-B.

IV. INTER-BLOCK OPTIMIZATION

In this section, we introduce our inter-block optimization:

block decomposition and block reordering.

A. Block Decomposition

Each compute-intensive operator in machine learning mod-

els can be decomposed into a series of computation blocks.

The decomposition is implemented via loop tiling and re-

ordering. A computation block contains a small loop nest

that accesses tiles of input data to produce a tile of output

data. Usually, one computation block can be placed in one

processing core and all the accessed data of one block can

be accommodated by the on-chip local memory. The size

of each computation block is controlled by decomposition

parameters. We represent all the decomposition parameters

using a vector ~S = (s1, s2, ..., sI) (totally I parameters).

For example, when we decompose a GEMM chain, we will

use (TM , TN , TK , TL) because there are four dimensions to

decompose; for a convolution chain, we will have up to ten

dimensions.

In block decomposition, we aim to select the optimal block

decomposition parameters ~S that can maximize the overall

performance. Previous work [58] proposes to calculate these

parameters independently to balance the computation overhead

of different blocks. But as we will show in the next section,

the decomposition parameters cannot be independently chosen

because they influence the overall data reuse jointly with the

block execution order.

B. Minimizing Data Movement Volume via Block Reordering

Our aim in inter-block optimization is to find the optimized

block execution order and decomposition parameters ~S that

minimize the total data movement volume. Minimizing data

movement volume is equivalent to maximizing data locality (or

reuse). The computation blocks from different operators can

Algorithm 1: Data Movement Volume Calculation and

Memory Usage Algorithm for Operator Chains

input : Operator chain Ops
input : Permutation Perm = (lp1 , lp2 , ..., lpI)
input : Decomposition parameters ~S = (s1, s2, ..., sI)
output : data movement volume DV
output : memory usage MU

1 DV = 0; MU = 0;
2 for op ∈ Ops do
3 total DF = 0;
4 for tensor T ∈ op.allTensors() do

5 DF = getFootprint(T , ~S);
6 total DF += DF;
7 if T ∈ Ops.IOTensors() then
8 DM = DF;
9 keep reuse = true;

10 for loop lpi ∈ reversed(Perm) do
11 if lpi ∈ op.allLoops() then
12 if lpi accesses tensor T then
13 keep reuse = false;

14 if not keep reuse then

15 DM *= dLpi

spi
e

16 DV += DM;

17 for loop lpi ∈ Perm do
18 if lpi is private to op then
19 Perm.erase(lpi);

20 MU = max(MU, total DF);

21 return DV, MU;

be reordered to obtain a better data reuse as introduced in Fig-

ure 2. For simplicity, we assume that there are two compute-

intensive operators in the input program. For more compute-

intensive operators, the analysis method remains similar. Note

that there are no constraints on memory-intensive operators.

For memory-intensive operators, we use the standard fusion

optimizations as in previous work [43], [63], which will not

be discussed in this paper.

We suppose there are P loops in the first compute-intensive

operator and Q loops in the second compute-intensive opera-

tor. The different orders of these loops indicate different block

execution orders as illustrated in the example in Figure 2 in

Section II-B1. In general, the whole design space is composed

of all the (P + Q)! different permutations of these loops.

But the actual design space size can be much smaller than

(P + Q)! because the two compute-intensive operators may

share some common loops and the ordering of common loops

has no effect on data reuse. In the example of GEMM chain

in Figure 2, there are 24 different reordering choices but

not (3 + 3)! = 720. This is because the two GEMMs have

two common dimensions m and l, and there are only four

independent loops (m,n, k, l). So the design space size is 4!.
In the following, we only consider that there are I (I ≤ P+Q,

which corresponds to the number of parameters in ~S) inde-

pendent loops (l1, l2, ..., lI) and the actual design space size

is I!. The original loop trip count of loop li is denoted as Li.

A permutation of these loops is denoted as (lp1
, lp2

, ..., lpI
),

where (p1, p2, ..., pI) is a permutation of (1, 2, 3, .., I). The

blocks execute from the right-most (innermost) loop to the

left-most (outermost) loop.

The main idea of finding the optimized block execution

order (i.e., loop permutation choice) is to analytically express

the data movement volume with respect to the decomposition

parameters ~S for each permutation choice. By doing so, we

can minimize the data movement volume by finding a suitable
~S and get the optimized permutation choice that gives the

minimal data movement volume among all the candidates.

Intuitively, the data movement volume for each tensor is the

product of the footprint of the tensor and the trip counts of the

surrounding loops. In addition, we make three observations

about the data movement. First, some loops will not cause

any data movement because both their iteration variables and

their inner loops’ iteration variables are not used in tensor

access indices. Second, once a loop causes data movement, all

the surrounding outer loops will cause data movement. Third,

the loops that only appear (private) in producer operators will

not cause data movement in consumer operators. We use the

GEMM chain example in Figure 2 to explain the observations.

Under mknl order, loops n, l will not cause data movement for

matrix A because their loop variables are not used to access

matrix A (observation 1); under mnlk order, loops n, l will

cause data movement for matrix A because the inner loop k
has already caused data movement (observation 2); under any

block order, loop k will not cause data movement to matrices

D,E because k is the reduction loop of the first GEMM,

which has no effect on the second GEMM (observation 3). We

use the observation 1 and 2 to calculate the data movement

among blocks within one operator and use the observation 3

to detect data reuse between operators.

Algorithm 1 computes the data movement volume for a

given permutation choice. In detail, for the target operator

chain Ops, for a given permutation (lp1
, lp2

, ..., lpI
), the Algo-

rithm traverses the operator chain according to topology order

(from producers to consumers, at line 2). Only the input/output

tensors of the whole operator chain (returned by function

IOTensors) are considered (line 7) because the intermediate

results are all stored in on-chip memory. We use getFootprint

TABLE III
DATA MOVEMENT VOLUME AND MEMORY USAGE FOR GEMM CHAIN

UNDER THE ORDER OF mlkn.

A B C D E

DM MKd L
TL

e KLd M
TM

e 0 NLd M
TM

e MNd L
TL

e

DF TMTK TKTL TMTL TLTN TMTN

function to calculate the data tile footprint (DF) of each tensor

(line 5) according to the decomposition parameters ~S. To

calculate the data movement volume, we need to figure out

how many times the data tile is replaced during execution.

Note that only the loops that access the tensor will

cause data tile replacement (observation 1). We use a flag

keep reuse to check whether the current loop lpi
will cause

replacement (line 12-14). If so, we increase the data movement

of current tensor T by multiplying the loop trip counts (line

15). This flag remains true for all other outer loops and multi-

plies their trip counts to data movement volume (observation

2). Before we move to the consumer operators, we need to

exclude the influence of the private loops of the producer

operators (see line 17-19) because such private loops won’t

iterate over the tensors of the consumer operators (observation

3). The algorithm also returns the maximal memory usage MU,

which will be used as the problem constraints.

After getting the data movement volume DV and the mem-

ory usage MU, we can define the optimization problem as

min~S DV, s.t. MU ≤ MemoryCapacity (1)

To solve this constrained optimization problem, we first solve

Equation 1 in real number domain (R) and then get the

approximate integer solution by floor rounding. In detail, we

use the Lagrange Multiplier method to get the extreme values

of DV and the corresponding extreme points ~S∗. We then get

approximate integer candidate solutions by the floor rounding

of ~S∗. Finally, the integer candidate that minimizes DV is

chosen as the final solution.

We use the GEMM chain example in Figure 2 to elaborate

more on the optimization problem. We use the execution order

mlkn in Figure 2 (in row 6) for demonstration. By using Algo-

rithm 1, we can get the data movement volume and footprint of

matrix A,B,C,D,E as shown in Table III (in this example,

the decomposition parameters are ~S = (TM , TN , TK , TL)).
DM represents data movement volume, and DF represents data

footprint of each tensor. The DM of C is 0 because it is an

intermediate result and is always reused in on-chip memory.

So the total data movement volume of the GEMM chain is

DVGEMM Chain = DMA +DMB +DMC +DMD +DME

= MKd L

TL

e+KLd M

TM

e+NLd M

TM

e+MNd L

TL

e

The peak memory usage MU of all the tensors is

MU = max{GEMM1MU ,GEMM2MU}
GEMM1MU = DFA +DFB +DFC = TMTK + TKTL + TMTL

GEMM2MU = DFC +DFD +DFE = TMTL + TLTN + TMTN

To minimize the total data movement volume without ex-

ceeding memory capacity limit, the optimization problem is

formulated as follows

min DVGEMM Chain s.t. MU ≤ MemoryCapacity

By using Lagrange Multiplier method, we get the minimum

point and the minimal data movement volume:

DV ∗ =
2ML(K +N)

T ∗
M

, T ∗
M = T ∗

L = −α+
√

α2 +MC,T ∗
N = α

The MC is short for MemoryCapacity. α is a lower

bound of TN , TK . We set the lower bound because TN , TK

are free variables in this optimization problem. Further, we

convert real values to integers by TX = min{bT ∗

Xc, X}
(X ∈ {M,N,K,L}). We could also estimate the gap between

the approximated solution and the optimal one and show that

our solution is close to the optimal one with constant bounds.

We use the ratio of the approximated data movement volume

(DVapp) to the optimal value (DV ∗) to show the difference:

DVapp

DV ∗
≤ maxX∈{M,L}{1 +

T ∗
X

X
+

1

TX

} ≤

maxX∈{M,L}{1 +
√
MC

X
+

1

min{X,
√
MC}

}, (MC >> α)

C. Optimization for Multi-level Memory Hierarchy

In previous sections, we only consider one level of memory.

For multiple levels of on-chip memory, our computation blocks

can be further decomposed into sub-blocks recursively. The

reordering of these sub-blocks will influence the data move-

ment volume in higher level on-chip memory. We also model

the cost of data movement across different layers of memory

with respect to hardware configurations. Suppose that we have

D levels of on-chip memory. The data movement volume for

level d is defined as DVd(~Sd), where ~Sd is the decomposition

parameter list for level d. Then, the data movement cost

Costd(~Sd) from level d+1 to level d is calculated as follows.

Costd(~Sd) = DVd(~Sd)/bwd (2)

where bwd is the memory bandwidth. To minimize the overall

data movement cost, we need to minimize the slowest data

movement stage through all the memory levels. Therefore, we

formulate the optimization as follows,

min ~S1, ~S2,..., ~SD
{max{Cost1(~S1), ..., CostD(~SD)}},

s.t. MU1 ≤ MC1, ...,MUD ≤ MCD

(3)

MCd is the MemoryCapacity of level d memory; MUd

is the memory usage of level d memory. Chimera uses this

objective function to decide the optimal block decomposition

parameters and execution order for each level of memory.

Fig. 4. Replaceable Micro Kernel.

V. INTRA-BLOCK OPTIMIZATION

In this section, we introduce the hardware-specific opti-

mizations in Chimera. Different hardware accelerators require

different optimizations to achieve high performance. Chimera

leverages replaceable micro kernels to handle the hardware

diversity.

A. Replaceable Micro Kernels

The programming model and optimization methods of dif-

ferent accelerators are different. For example, to implement

a high-performance micro kernel for matrix multiplication,

on CPUs, we need to program assembly to use the SIMD

units; on GPU, we need to use Tensor Core intrinsic to

map computations to Tensor Core units; on NPU, we need

to add pragmas to loops to instruct the low-level compiler

to generate accelerator instructions. To handle the hardware

diversity through a unified approach, Chimera uses replaceable

micro kernels, which are extensible and flexible for different

hardware backends.

A replaceable micro kernel is an abstraction for the com-

putation block that describes a naive loop nest over the in-

put/output data buffers. For different accelerators, the replace-

able micro kernel can be substituted by low-level hardware-

specific implementations in either assembly, intrinsic, or prag-

mas. In Chimera, we register different hardware-specific micro

kernels that perform the same computation (using different

device instructions) under the same replaceable micro kernel.

During compilation and code generation, Chimera will lower

the replaceable micro kernel to the corresponding registered

low-level micro kernel according to the target hardware. We

use an example in Figure 4 to explain replaceable micro

kernel in detail. In this example, we use a replaceable micro

kernel to describe a 16× 16 matrix multiplication using high-

level loop nests and register three different low-level micro

kernel implementations to this replaceable micro kernel. The

micro kernels are written in low-level code (e.g., around

140 lines of assembly for CPU) and registered to Chimera

using Chimera’s Python interface. During code generation, the

three different implementations will be automatically selected

according to the target device. The registered low-level code

will be automatically generated by the compiler.

B. Micro Kernel Code Generation

The code generation of micro kernels is tightly coupled

with operators. Here, We focus on matrix multiplication micro

kernels, which can be reused by various compute-intensive

operators including GEMM, batch GEMM, and convolution.

CPU Micro Kernels. The pseudo-code of the micro kernel

is displayed in Algorithm 2. We adopt an outer-product ap-

proach similar to [26], [31]. The micro kernel hides the latency

of the register load/store by providing enough concurrent

computations and keeps the FMA pipeline busy by emitting

MI × NI consecutive FMA instructions together (MI × NI is

the pipeline depth).

To decide parameters (MI, NI, MII, KI) of the microKernel,

we maximize the arithmetic intensity (AI) under the constraint

of available registers.

max
MI,NI,MII

AI = #ComputeInst/#LoadStoreInst

s.t. RegUsed ≤ #Registers

where #ComputeInst = MI ×NI ×KI

#LoadStoreInst = KI × (MI +NI) + 2MI ×NI

RegUsed = MI ×NI +NI +MII

For example, for Cascadelake microarchitecture with 32

ZMM registers, we set MI, NI, MII to 6, 4, 2 and set KI dy-

namically according to the problem size with a pipeline depth

of 24 to maximize the AI . During code generation, low-level

assembly code will be generated according to Algorithm 2 and

the parameters (MI, NI, MII, KI).

Algorithm 2: CPU Micro Kernel Design

constant : RegLen # the vector register length.
parameter : MI, NI, MII, KI
input : A[MI, KI], B[KI, NI*RegLen]
input/output: C[MI, NI*RegLen]
register : RegA[MII], RegB[NI], RegC[MI, NI]

1 for m in [0, MI, 1) do
2 for n in [0, NI, 1) do
3 vecLoad(C[m,n*RegLen: (n+1)*RegLen],

RegC[m,n])

4 for k in [0, KI, 1) do
5 for n in [0, NI, 1) do
6 vecLoad(B[k,n*RegLen: (n+1)*RegLen],

RegB[n])

7 for mo in [0,MI, MII) do
8 for mi in [0, MII, 1) do
9 vecLoad(A[mo+mi,k], RegA[mi])

10 for mi in [0, MII, 1) do
11 for n in [0, NI, 1) do
12 FMA(RegC[mo+mi,n], RegA[mi], RegB[n])

13 for m in [0, MI, 1) do
14 for n in [0, NI, 1) do
15 vecStore(C[m,n*RegLen: (n+1)*RegLen],

RegC[m,n])

GPU Micro Kernels. On Tensor Core GPUs, we can use the

WMMA mma sync intrinsic to compute a 16×16×16 matrix

multiplication at a time. However, directly using the intrinsic

is not efficient because each mma sync intrinsic requires one

corresponding matrix load and store operation. As a result,

the arithmetic intensity is low, and the performance will be

bounded by memory operations. To improve the arithmetic

intensity, our micro kernel for GPU unrolls the inner loops

and schedules the intrinsic order to perform a tiled outer-

product. In detail, the micro kernel loads two 16×16 matrices

for each operand matrix at a time and updates 2 × 2 tiles of

16×16 matrices for the result matrix. In this implementation,

each loaded matrix tile is reused for two times and the overall

arithmetic intensity is improved.

NPU Micro Kernels. The Ascend NPU uses a Python DSL

with pragmas. The NPU micro kernel is implemented using

pragmas that maps computations to dedicated hardware units

(cube unit and vector unit). Low-level device binary code will

be generated by the NPU’s close-source compiler CNCC [1].

To implement the matrix multiplication micro kernel, we have

to use the mad pragma, which expects six nested loops that

computes a tiled matrix multiplication:

C[m1, n1,m2, n2]+ = A[m1, k1,m2, k2] ∗B[k1, n1, n2, k2]

(m1 ≤ M1,m2 ≤ M2, n1 ≤ N1, n2 ≤ N2, k1 ≤ K1, k2 ≤ K2)

To produce the expected loop nest and loop order, we pack

the input matrices in on-chip memory using DMA instructions

to produce contiguous data arrays. The overall arithmetic

intensity of this micro kernel is

AI =
M1×M2×N1×N2

M1×M2 +N1×N2

We maximize the AI by setting

M2 = N2 = Lane of cube units

and setting M1 = N1 according to the L0 on-chip buffer size

of the NPU.

VI. EVALUATION

A. Evaluation Setup

We test both subgraph fusion performance and full network

performance. The subgraphs we use include the batch GEMM

chains from Bert [16], ViT [17], and MLP-Mixer [46] and

the convolution chains from CNNs such as SqueezeNet [22]

and Yolo [40], [41]. For the whole network evaluation, we

use Transformer [48], Bert [16], and ViT [17]. We use three

server-class accelerators: Intel Xeon Gold 6240 AVX-512

CPU (1.125MB L1 cache, 18MB L2 cache, and 24.75MB L3

cache), Nvidia A100 Tensor Core GPU (up to 164KB/SM

shared memory, 40.96MB L2 cache), and Huawei Ascend

910 NPU (64KB L0A/B buffer, 256KB L0C buffer, 1MB

L1 buffer, 256KB Unified Buffer). Our baseline includes

both hand-tuned libraries and state-of-the-art compilers. For

libraries, we compare to PyTorch [38] (that uses MKL [3] and

oneDNN [2] on CPU and uses CuBlas [5] and CuDNN [6]

on GPU), TensorRT [8], and CANN (library for NPU). For

compilers, we compare to the state-of-the-art machine learning

compilers including Relay [43], Ansor [57], TASO [23],

TVM+Cutlass [54], and AKG [56] (compiler for NPU).

PyTorch Relay Ansor oneDNN Chimera

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

a) Batch GEMM fuse batch GEMM b) Batch GEMM fuse softmax fuse batch GEMM

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

c) Conv fuse Conv d) Conv fuse ReLU fuse Conv

0

1

2

3

4

5

6

C1 C2 C3 C4 C5 C6 C7 C8 GEO

0

1

2

3

4

5

6

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 GEO

0

1

2

3

4

5

6

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 GEO

0

1

2

3

4

5

6

C1 C2 C3 C4 C5 C6 C7 C8 GEO

Fig. 5. The performance of fusing batch GEMM chains and fusing convolution chains on CPU.

TABLE IV
THE CONFIGURATIONS OF BATCH GEMM CHAINS.

Name batch M N K L Network

G1 8 512 64 64 512 Bert-Small

G2 12 512 64 64 512 Bert-Base

G3 16 512 64 64 512 Bert-Large

G4 12 256 64 64 256 ViT-Base/14

G5 16 256 64 64 256 ViT-Large/14

G6 16 256 80 80 256 ViT-Huge/14

G7 12 208 64 64 208 ViT-Base/16

G8 16 208 64 64 208 ViT-Large/16

G9 16 208 80 80 208 ViT-Huge/16

G10 1 512 64 64 256 MLP-Mixer

G11 1 768 64 64 384 MLP-Mixer

G12 1 1024 64 64 512 MLP-Mixer

B. Subgraph Performance

The subgraphs we use in this section include batch GEMM

chains and convolution chains. We have introduced them

in Section II-A. For batch GEMM chains, we evaluate

the performance of both with softmax as the intermedi-

ate memory-intensive operator and without any intermedi-

ate operator. For convolution chains, we evaluate the per-

formance of both using ReLU as the intermediate operator

and without any intermediate operators. The input config-

urations of the subgraphs are shown in Table IV and Ta-

ble V. In Table IV, (batch,M,K)× (batch,K, L) is the first

batch GEMM problem size. (batch,M,L) × (batch, L,N)
is the second batch GEMM problem size. In Table V,

the first convolution problem size is (batch, IC,H,W) ×
(OC1, IC, k1, k1), and the second convolution problem size

is (batch, OC1, bH/st1c, bW/st1c)× (OC2, OC1, k2, k2). st1
is the stride of the first convolution. st2 is the stride of the

second convolution.

AVX-512 CPU Performance. The results are shown in

TABLE V
THE CONFIGURATIONS OF CONVOLUTION CHAINS.

Name IC H W OC1 OC2 st1 st2 k1 k2
C1 64 112 112 192 128 2 1 3 1

C2 32 147 147 64 80 2 1 3 1

C3 64 56 56 128 64 1 1 3 1

C4 128 28 28 256 128 1 1 3 1

C5 16 227 227 64 16 4 1 3 1

C6 64 56 56 64 64 1 1 1 3

C7 64 56 56 64 64 1 1 1 1

C8 256 56 56 256 64 1 1 1 1

Figure 5. We show the relative performance normalized to

PyTorch. Ansor requires a long time for tuning (about half

an hour for one operator). We set it to tune 1000 trials

for each subgraph. Chimera only needs several minutes to

generate the fused kernels because it uses an analytical model.

Relay can use hand-optimized templates without tuning. For

batch GEMM fused with batch GEMM, Chimera can obtain

speedups compared to both hand-tuned libraries and compilers

because it can fuse the computations of two batch GEMMs and

improve the overall locality. The overall speedups are 2.62×
to PyTorch, 4.78× to Relay, 1.40× to Ansor, and 3.28× to

oneDNN. For fusing batch GEMMs and softmax, Chimera

achieves an average 1.62× speedup to PyTorch. The speedups

to Relay and Ansor are 7.89× and 2.29×.

For fusing convolution chains, we also use the convolu-

tion layers from real-world networks [19], [22], [40], [41].

Convolutions (especially when kernel size is 3× 3) are more

complicated than batch GEMM. The sliding windows of 3×3
convolutions can result in re-computations after fusion. Relay

and Ansor can’t fuse these complex operators together. So they

generate separate kernels for them. The speedup of Chimera is

2.38× to Relay and 1.94× to Ansor. In Figure 5 part d), we

show the performance of Chimera when fusing convolution

chains with ReLU. The speedups are in line with those of

fusing two convolutions (2.87× to Pytorch, 2.30× to Relay,

and 1.71× to Ansor).

Tensor Core GPU Performance. The results are shown

in Figure 6. For fusing batch GEMM and batch GEMM

(Figure 6 part a), the average speedup is 2.77× to PyTorch,

3.30× to TASO, 1.69× to Relay, 1.33× to Ansor, and 2.29×
to TensorRT. The speedup comes from fusing the memory-

bound batch GEMMs together and reducing off-chip memory

access. The total DRAM access of Chimera is reduced by

9.86% − 59.54% compared to PyTorch. Compilers such as

TASO and Ansor don’t fuse the two batch GEMMs and result

in two separate kernel calls in the generated code.

We also compare to TVM+Cutlass [54] and the average

speedup is 1.51×. Cutlass [7] is state-of-the-art open-source

DNN template library for GPU. Recent work BOLT [54]

explores the fusion of GEMM chains and convolution chains

using Cutlass templates. The relevant code is open-sourced

and is available in TVM [14]. We use the code to generate

kernels for batch GEMM chain and show the performance in

Figure 6, which is denoted as TVM+Cutlass. However, we

profile the result code and find TVM+Cutlass fails to achieve

high performance for our test cases. The reason is two-fold.

First, the Cutlass templates are developed manually by experts

and is limited in flexibility. In detail, TVM uses a front-

end analysis to find fusible subgraphs in the input program

by pattern matching. The pattern matching is not flexible

and classifies batch GEMM chain as a non-fusible subgraph.

Second, Cutlass templates only use a fixed block execution

order, which may miss the optimal execution order when

executing two consecutive GEMMs. By contrast, Chimera can

explore different execution orders through an analytical model,

which is the source of speedup.

For fusing batch GEMM chains with softmax (Figure 6 part

b), the average speedup to PyTorch is 2.74×. We don’t show

the performance of TASO and TVM+Cutlass because they

don’t support softmax. Relay and Ansor generate three kernels

for this subgraph because they can’t fuse softmax. Softmax

is more complicated than element-wise operators because it

requires three dependent steps in calculation: exp, sum, and

div. Chimera can fuse softmax because the sum operation of

softmax can be merged into the second batch GEMM, and

the order of div operation and the second batch GEMM can

be swapped. As a result, the average speedup of Chimera is

1.74× to Relay and 1.64× to Ansor.

For fusing convolution and convolution (Figure 6 part c),

the average speedups to PyTorch and TensorRT are 5.79× and

2.01×. Not all the convolution layers in the CNNs are suitable

for fusion. In general, Chimera gains speedups by fusion

only when the second convolution in the convolution chain

is memory-bound. Usually, point-wise convolutions tend to

be memory-intensive when channel dimensions are small and

they are commonly used in the initial layers of CNNs (image

resolution is high and the channel feature size is small). But

other convolution layers (e.g., 3 × 3 convolution) are usually

compute-bound and are not suitable for fusion. We use case C6

in Table V to confirm this point by showing the performance

of fusing point-wise convolution with 3× 3 convolution. This

subgraph comes from ResNet [19]. As shown in Figure 6 part

c) and d), Chimera can’t obtain speedup for C6 compared

to Ansor because the second convolution is compute-bound.

But for other subgraphs, Chimera can consistently get better

performance than Ansor. For fusing convolution chain with

ReLU, the average speedup to Relay is 4.32×; the average

speedup to Ansor is 1.30×.

NPU Performance. At last, we evaluate the GEMM chains

on NPU. For all the GEMM chains, we use batch size 1.

Our baseline is the TBE library (Tensor Boost Engine) from

CANN [1]. TBE provides hand-optimized GEMM implemen-

tations for Ascend NPUs. It cannot fuse two GEMMs within

one kernel. Another baseline we compare to is AKG [56].

AKG can provide state-of-the-art performance on Ascend NPU

for GEMM and support various fusion strategies. But fusing

GEMM chain is not explored by AKG. As shown in Figure 7,

Chimera achieves 2.39× speedup to TBE on average. The

average speedup to AKG is 1.14×. For some cases, Chimera

doesn’t obtain speedup to AKG. The reason is that the NPU

we use has a small Unified Buffer to transfer intermediate

results of the first GEMM. When the GEMM becomes large,

the Unified Buffer becomes a bottleneck and slows down the

overall execution.

C. Memory Analysis and Model Validation

We also profile the kernels generated by Chimera to provide

insights into performance. We use CPU as target platform and

profile the kernels of batch GEMM chains. For this subgraph,

Chimera fuses the two batch GEMMs together. So we only

need to profile one kernel for Chimera. For PyTorch, it uses

two separate kernels and we have to profile the two batch

GEMM kernels for it separately. As shown in Figure 8 part

a) and b), the average L2 and L3 cache hit rates of Chimera

exceed those of PyTorch. PyTorch-1 refers to the first GEMM

PyTorch uses; and PyTorch-2 refers to the second GEMM

PyTorch uses. The high cache hit rate of Chimera means

that more data movement happens in fast cache (e.g., L1

and L2 cache), which is the source of speedups. We also

profile the data movement amount between different levels

of cache and find that the data movement between L2 and L3

cache is greatly reduced (by 59.75% on average) by Chimera

compared to PyTorch as shown in Figure 8 part c). Similarly,

the DRAM access of Chimera is reduced by 75.17% on

average. Meanwhile, the data movement of Chimera between

the L1 and L2 cache increases by 46% on average, which

corresponds to the inter-op data movement.

To validate the accuracy of our data movement model, we

profile the GEMM chain (M = N = K = L = 2048) for

three different cases and show the predicted and measured

data movement volume in Figure 8 part d)-f). For each case,

we profile hundreds of different decomposition factors (tiling

factors) and plot the corresponding data movement volume

in the Figure. The x-axis is the predicted volume from our

analytical model and the y-axis is the ground-truth measured

!
"
#$
%&
'
"
()
"
*
+,
*
-
$
.
/
"

!"#$!%&'#()**#+,-.#/!%&'#()** /"#$!%&'#()**#+,-.#-0+%1!2 +,-.#/!%&'#()**

!
"
#$
%&
'
"
()
"
*
+,
*
-
$
.
/
"

&"#3045#+,-.#3045 6"#3045#+,-.#7.89 +,-.#3045

!

"

#

$

%

&' &" &(&# &) &$ &* &% &+ &'! &'' &'" &,-

!

"

#

$

%

&' &" &(&# &) &$ &* &% &+ &'! &'' &'" &,-

!

"

#

$

%

.' ." .(.# .) .$.* .% &,-

!

"

#

$

%

.' ." .(.# .) .$.* .% &,-

/012345 167- 89:;0 6<=23 19<=2381 1>?@.AB:;== .5CD93;

Fig. 6. The performance of fusing batch GEMM chains and fusing convolution chains on GPU.

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

0

1

2

3

4

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 GEO

TBE AKG Chimera

Fig. 7. The performance of fusing GEMM chain on NPU.

using hardware profiling. The plots will be close to the line

y = x if our predication is accurate. We focus on the data

movement between L1 cache and L2 cache. For the case in

part d), we use the block execution order mlkn. The results

show that the predication accuracy is high and the correlation

between the ground-truth and predictions is also high (R2 =
0.97). We also show the predicted optimal data movement

using a red point in the Figure. The predicted value is close to

the ground-truth (the left bottom point in the Figure). For the

case in part e), we use another order mlnk. The predictions are

also accurate (R2 = 0.98). In part f), we use the order mlkn
but force the second GEMM not to reuse the intermediate

matrix C, which will result in more data movement. This case

is used to show that reusing intermediate data is also critical to

performance when generating fused kernels. Among the three

cases, the optimal order is mlkn with intermediate data reuse

in part d). This order is actually the optimal order found by

Chimera. Through this experiment, we show that our analytical

model is efficient and accurate.

D. End-to-end Performance

For full network performance evaluation, we use Trans-

former (referred to as TF), Bert, and ViT (batch size is 1). TF-

Small, TF-Base, TF-Large are three different configurations

for Transformers, the sequence length of which is set to

512. The batch GEMM chain input shapes for the different

configurations are shown in Table IV.

We use PyTorch with CuDNN enabled as baseline (de-

noted as PyTorch+CuDNN). We also compare Chimera to

TensorRT, CuDNN, and Ansor. Relay is able to invoke Ten-

sorRT and CuDNN directly (denoted Relay+TensorRT and

Relay+CuDNN). Ansor is integrated with Relay so we can use

Ansor to generate batch GEMM chain kernels without using

CuDNN (denoted as Relay+Ansor). We set Ansor to tune 1000

trials for each batch GEMM chain kernel. To compare the

performance of Chimera, we integrate Chimera with Relay

and replace the batch GEMM chain kernels of Relay with

those of Chimera (denoted as Relay+Chimera).

We use one A100 GPU as the target device. The perfor-

mance results are shown in Figure 9. Relay+Chimera is much

faster than PyTorch+CuDNN because Relay+Chimera uses

static graphs, while PyTorch uses dynamic graphs. Compared

to Relay+TensorRT, Relay+CuDNN, and Relay+Ansor, the

geometric speedups of Relay+Chimera are 1.42×, 1.31×,

and 1.22×, respectively. Relay+TensorRT is slower than the

other compilers because TensorRT can’t fuse the softmax layer

in the self-attention layer. Meanwhile, the batch GEMMs in

the networks are irregular, which is not well optimized in

TensorRT.

E. Discussion

Optimization Overhead. Chimera uses an analytical data

movement analysis for inter-block and intra-block optimiza-

tion. We compare the optimization overhead of Chimera

with the state-of-the-art optimizing compiler Ansor [57] using

batch GEMM chains on Intel Xeon Gold 6240 CPU. Ansor

uses hardware-profiling to train a cost model and then uses the

cost model to guide the exploration of the optimization space.

0

0.2

0.4

0.6

0.8

1

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
1

0

G
1

1

G
1

2

G
E

O

a) L2 cache hit rate

0

0.2

0.4

0.6

0.8

1

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
1

0

G
1

1

G
1

2

G
E

O

b) L3 cache hit rate

H
it

 R
a

te

0

2

4

6

8

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
1

0

G
1

1

G
1

2

G
E

O

N
o

rm
a

li
ze

d

D
a

ta
 M

o
v
e

m
e

n
t

c) L2- L3 data movement

Chimera PyTorch-1 PyTorch-2 PyTorch-1 + PyTorch-2

M
e

a
su

re
d

 D
a

ta
 M

o
v
e

m
e

n
t

d) mlkn order, reuse matrix C e) mlnk order, reuse matrix C f) mlkn order, not reuse matrix C

predicted optimal

value
predicted optimal

value

predicted optimal

value

Fig. 8. Memory analysis and model validation of Chimera and PyTorch on CPU. We use batch GEMM chain as example.

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

0

5

10

15

PyTorch+CuDNN Relay+TensorRT Relay+CuDNN Relay+Ansor Relay+Chimera

Fig. 9. The end-to-end network evaluation on A100 GPU

.

!
"
#
$
%
&'
(
)
*
+,
)
#
-"
#
$
%
.
/
)

!

!"#

!"$

!"%

!"&

'

(' (# () ($ (* (% (+ (& (, ('! ('' ('# (-.

/0123452 678 679 67: 67:98;<8=4>2?0@

Fig. 10. Ablation study results on CPU.

Chimera’s optimization is much faster than Ansor (21.89× on

average) and achieves 1.39× speedup because it estimates data

movement volume using analytical models before compilation.

In contrast, Ansor needs to profile the kernels on hardware

frequently during compilation.

Ablation Study. We perform an ablation study to show

the performance contribution of our cost model (C), fusion

techniques (F), and micro kernel (M), respectively. We use

batch GEMM chains for evaluation. The normalized perfor-

mance is shown in Figure 10. We prepare five versions of

Chimera. baseline is Chimera with cost model, fusion, and

micro kernel all disabled. For other versions, we use the

name C, F, M to indicate if the corresponding optimization

is enabled. For example, version v-C has only cost model

enabled; version v-F has only fusion optimizations enabled.

When cost model is disabled, Chimera randomly samples

100 candidate tiling factors for each block order and chooses

the best one by evaluating them on hardware. On average,

compared to baseline, cost model can bring 2.37× speedup,

fusion techniques can bring 1.89× speedup, and micro kernel

can bring 1.61× speedup. Collectively, cost model, fusion,

and micro kernel optimizations are all critical to final high

performance.

VII. RELATED WORK

Various hand-tuned libraries [2], [3], [5]–[7], [28], code gen-

eration compilers [12], [14], [23], [32], [35], [36], [43], [45],

[47], [49], [56], [57], [63], mappers [20], [21], [37], [55],

and accelerators [10], [18], [33], [44], [51] are developed to

improve the performance of machine learning models.

Library-based Fusion. Fusing compute-intensive operators

has been exploited by several previous works. Wang et al. [50]

empirically explore the fusion of convolution layers in CNNs.

Ashari et al. [11] propose to implement fused kernels for a spe-

cific computation pattern in machine learning. Although pro-

viding extremely high performance, these works rely on hand-

optimized kernels and is customized for specific workloads.

Liang et al. [29] propose to fuse GPU kernels both spatially

and temporally by threadblock interleaving to fully utilize

the hardware resources. Rammer [32] and Versapipe [62] use

persistent threadblocks to perform task scheduling for GPU

kernel launching. Astra [45] can fuse GEMM workloads in

RNNs. But it doesn’t generate low-level code and relies on

hand-tuned libraries. Li et al. [28] and TASO [23] can fuse

parallel convolutions to increase parallelism. However, they

can’t fuse convolutions with dependencies. BOLT [54] uses

Cutlass [7] template library to generate code for fused GEMM

chains and convolution chains. Compared to these works,

Chimera doesn’t rely on external libraries and is more general

for new operators and accelerators.

Transformation-based Fusion. Recent compilers also use

loop transformation techniques to fuse operators. Halide [39]

provides primitives to support kernel fusion and uses auto-

schedulers [9], [34] to fuse kernels. But it focuses on image

processing pipelines and the operators are not as complex as

GEMM and convolution. TVM [14] uses different schedulers

AutoTVM [15], FlexTensor [61], and Ansor [57] to provide

fusion supports for memory-intensive operators. Fusion Stitch-

ing [64] and AStitch [63] enlarge the fusion scope by using

shared memory and global memory as the intermediate buffer.

However, they use compute-intensive operators as dividing

lines for fusion and don’t fuse compute-intensive operators

together, missing the opportunities for further fusion optimiza-

tions. NeoFlow [59] explicitly avoids the fusion of compute-

intensive operators because of its limited code generation

flexibility. DNNFusion [36] is designed for mobile devices

(e.g., ARM CPU and GPU). It fails to fuse compute-intensive

operators because its fusion algorithm always considers fusing

compute-intensive operators as non-beneficial. This rule gives

good results for mobile device, but is too conservative for

server-level accelerators because server-level accelerators have

larger on-chip memory, which provides more opportunities for

locality optimization for compute-intensive operator chains.

Hardware Accelerators and Mappers. Besides software

fusion works, many hardware solutions for fusion are pro-

posed. Xiao et al. [52] propose to fuse CNN layers and use

heterogeneous algorithms to accelerate the fused layers on

FPGA. FusedLayer [10], FixyNN [51], FixyFPGA [33], and

Tangram [18], Ascend [30] implement efficient accelerators

that can pipeline different DNN layers to gain inter-layer

and intra-layer parallelism. Although they provide efficient

hardware support for fusion, the performance of these ac-

celerators for real workloads depends on the quality of the

mappings between applications and hardware. Current map-

pers TimeLoop [37], Interstellar [55], Mind Mappings [20],

CoSA [21], HASCO [53], and AMOS [60] are designed for

perfect loop nests. However, fusion will produce imperfect

loop nests. As a result, these mappers cannot fully exploit the

high performance of the new accelerators. Chimera’s analysis

and optimizations are generally designed for the fusion of

compute-intensive operator chains, which are able to exploit

new hardware features for locality optimizations.

VIII. CONCLUSION

Generating fused kernels for compute-intensive operator

chains in machine learning models is beneficial for perfor-

mance. But the related optimizations in current libraries and

compilers are rudimentary and thus they can’t fully exploit

the performance of emerging hardware. In this paper, we

propose Chimera, an optimizing compiler that fuses memory-

bound compute-intensive operators. It optimizes inter-block

data movement and intra-block computations. It can generate

efficient fused kernels for improving locality. On CPU, GPU,

and NPU, the speedups to hand-tuned libraries are up to

2.87×, 2.29×, and 2.39×, respectively. Compared to state-

of-the-art compilers, the speedups are up to 2.29×, 1.64×,

and 1.14× for CPU, GPU, and NPU.

ACKNOWLEDGEMENTS

We thank all the anonymous reviewers for their suggestions.

This work is supported in part by the National Natural Science

Foundation of China (NSFC) under grant No. U21B2017 and

in part by Project 2020BD024 supported by PKU-Baidu Fund.

REFERENCES

[1] “Huawei Compute Architecture for Neural Networks (CANN),” https:
//e.huawei.com/hk/products/cloud-computing-dc/atlas/cann.

[2] “Intel oneAPI Deep Neural Network Library,” https://github.com/oneapi-
src/oneDNN.

[3] “Intel oneAPI Math Kernel Library,” https://software.intel.com/content/
www/us/en/develop/tools/oneapi/components/onemkl.html.

[4] “Nvidia Ampere Whitepaper,” https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf.

[5] “Nvidia CuBLAS,” https://developer.nvidia.com/cublas.

[6] “Nvidia CuDNN,” https://developer.nvidia.com/cudnn.

[7] “Nvidia CUTLASS,” https://github.com/NVIDIA/cutlass.

[8] “Nvidia TensorRT,” https://docs.nvidia.com/deeplearning/tensorrt/
developer-guide/index.html.

[9] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand, and J. Ragan-Kelley,
“Learning to optimize halide with tree search and random programs,”
ACM Trans. Graph., vol. 38, no. 4, pp. 121:1–121:12, 2019. [Online].
Available: https://doi.org/10.1145/3306346.3322967

[10] M. Alwani, H. Chen, M. Ferdman, and P. A. Milder, “Fused-layer CNN
accelerators,” in 49th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016.
IEEE Computer Society, 2016, pp. 22:1–22:12. [Online]. Available:
https://doi.org/10.1109/MICRO.2016.7783725

[11] A. Ashari, S. Tatikonda, M. Boehm, B. Reinwald, K. Campbell,
J. Keenleyside, and P. Sadayappan, “On optimizing machine learning
workloads via kernel fusion,” in Proceedings of the 20th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP

2015, San Francisco, CA, USA, February 7-11, 2015, A. Cohen and
D. Grove, Eds. ACM, 2015, pp. 173–182. [Online]. Available:
https://doi.org/10.1145/2688500.2688521

[12] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas,
Y. Zhang, P. Suriana, S. Kamil, and S. P. Amarasinghe, “Tiramisu: A
polyhedral compiler for expressing fast and portable code,” CoRR, vol.
abs/1804.10694, 2018. [Online]. Available: http://arxiv.org/abs/1804.
10694

[13] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[14] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“TVM: an automated end-to-end optimizing compiler for deep
learning,” in 13th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2018, Carlsbad, CA, USA,

October 8-10, 2018, 2018, pp. 578–594. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/chen

[15] T. Chen, L. Zheng, E. Q. Yan, Z. Jiang, T. Moreau, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “Learning to optimize tensor
programs,” in Advances in Neural Information Processing Systems

31: Annual Conference on Neural Information Processing Systems

2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, 2018,
pp. 3393–3404. [Online]. Available: http://papers.nips.cc/paper/7599-
learning-to-optimize-tensor-programs

[16] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/
1810.04805

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in 9th International

Conference on Learning Representations, ICLR 2021, Virtual Event,

Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[18] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis,
“TANGRAM: optimized coarse-grained dataflow for scalable NN
accelerators,” in Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS 2019, Providence, RI, USA,

April 13-17, 2019, I. Bahar, M. Herlihy, E. Witchel, and A. R.
Lebeck, Eds. ACM, 2019, pp. 807–820. [Online]. Available:
https://doi.org/10.1145/3297858.3304014

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, 2016,
pp. 770–778. [Online]. Available: https://doi.org/10.1109/CVPR.2016.90

[20] K. Hegde, P. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind mappings: enabling efficient algorithm-accelerator
mapping space search,” in ASPLOS ’21: 26th ACM International

Conference on Architectural Support for Programming Languages

and Operating Systems, Virtual Event, USA, April 19-23, 2021,
T. Sherwood, E. Berger, and C. Kozyrakis, Eds. ACM, 2021, pp.
943–958. [Online]. Available: https://doi.org/10.1145/3445814.3446762

[21] Q. Huang, A. Kalaiah, M. Kang, J. Demmel, G. Dinh, J. Wawrzynek,
T. Norell, and Y. S. Shao, “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in 48th ACM/IEEE Annual

International Symposium on Computer Architecture, ISCA 2021,

Valencia, Spain, June 14-18, 2021. IEEE, 2021, pp. 554–566.
[Online]. Available: https://doi.org/10.1109/ISCA52012.2021.00050

[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[23] Z. Jia, O. Padon, J. J. Thomas, T. Warszawski, M. Zaharia,
and A. Aiken, “TASO: optimizing deep learning computation with
automatic generation of graph substitutions,” in Proceedings of

the 27th ACM Symposium on Operating Systems Principles, SOSP

2019, Huntsville, ON, Canada, October 27-30, 2019, T. Brecht and
C. Williamson, Eds. ACM, 2019, pp. 47–62. [Online]. Available:
https://doi.org/10.1145/3341301.3359630

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems 25: 26th Annual Conference on Neural

Information Processing Systems 2012. Proceedings of a meeting held

December 3-6, 2012, Lake Tahoe, Nevada, United States, P. L. Bartlett,
F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,
2012, pp. 1106–1114. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks

[25] C. Lattner and V. S. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in 2nd IEEE /

ACM International Symposium on Code Generation and Optimization

(CGO 2004), 20-24 March 2004, San Jose, CA, USA. IEEE
Computer Society, 2004, pp. 75–88. [Online]. Available: https:
//doi.org/10.1109/CGO.2004.1281665

[26] R. Li, Y. Xu, A. Sukumaran-Rajam, A. Rountev, and P. Sadayappan,
“Analytical characterization and design space exploration for
optimization of cnns,” CoRR, vol. abs/2101.09808, 2021. [Online].
Available: https://arxiv.org/abs/2101.09808

[27] R. Li, Y. Xu, A. Sukumaran-Rajam, A. Rountev, and P. Sadayappan,
“Analytical characterization and design space exploration for
optimization of cnns,” in ASPLOS ’21: 26th ACM International

Conference on Architectural Support for Programming Languages

and Operating Systems, Virtual Event, USA, April 19-23, 2021,
T. Sherwood, E. Berger, and C. Kozyrakis, Eds. ACM, 2021, pp.
928–942. [Online]. Available: https://doi.org/10.1145/3445814.3446759

[28] X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li, “A coordinated tiling and
batching framework for efficient GEMM on gpus,” in Proceedings of

the 24th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP 2019, Washington, DC, USA, February

16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp.
229–241. [Online]. Available: https://doi.org/10.1145/3293883.3295734

[29] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen,
“Efficient GPU spatial-temporal multitasking,” IEEE Trans. Parallel

Distributed Syst., vol. 26, no. 3, pp. 748–760, 2015. [Online]. Available:
https://doi.org/10.1109/TPDS.2014.2313342

[30] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend:
a scalable and unified architecture for ubiquitous deep neural network
computing : Industry track paper,” in IEEE International Symposium on

High-Performance Computer Architecture, HPCA 2021, Seoul, South

Korea, February 27 - March 3, 2021. IEEE, 2021, pp. 789–801.
[Online]. Available: https://doi.org/10.1109/HPCA51647.2021.00071

[31] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti,
“Analytical modeling is enough for high-performance blis,” ACM

Trans. Math. Softw., vol. 43, no. 2, aug 2016. [Online]. Available:
https://doi.org/10.1145/2925987

[32] L. Ma, Z. Xie, Z. Yang, J. Xue, Y. Miao, W. Cui, W. Hu, F. Yang,
L. Zhang, and L. Zhou, “Rammer: Enabling holistic deep learning
compiler optimizations with rtasks,” in 14th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 20), 2020, pp.
881–897.

[33] J. Meng, S. K. Venkataramanaiah, C. Zhou, P. Hansen, P. N.
Whatmough, and J. Seo, “Fixyfpga: Efficient FPGA accelerator for
deep neural networks with high element-wise sparsity and without
external memory access,” in 31st International Conference on Field-

Programmable Logic and Applications, FPL 2021, Dresden, Germany,

August 30 - Sept. 3, 2021. IEEE, 2021, pp. 9–16. [Online]. Available:
https://doi.org/10.1109/FPL53798.2021.00010

[34] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and
K. Fatahalian, “Automatically scheduling halide image processing
pipelines,” ACM Trans. Graph., vol. 35, no. 4, pp. 83:1–83:11, 2016.
[Online]. Available: https://doi.org/10.1145/2897824.2925952

[35] S. Nakandala, K. Saur, G. Yu, K. Karanasos, C. Curino, M. Weimer,
and M. Interlandi, “A tensor compiler for unified machine learning
prediction serving,” CoRR, vol. abs/2010.04804, 2020. [Online].
Available: https://arxiv.org/abs/2010.04804

[36] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren, “Dnnfusion:
accelerating deep neural networks execution with advanced operator
fusion,” in PLDI ’21: 42nd ACM SIGPLAN International Conference

on Programming Language Design and Implementation, Virtual Event,

Canada, June 20-25, 2021, S. N. Freund and E. Yahav, Eds.
ACM, 2021, pp. 883–898. [Online]. Available: https://doi.org/10.1145/
3453483.3454083

[37] A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. S. Emer,
“Timeloop: A systematic approach to DNN accelerator evaluation,”
in IEEE International Symposium on Performance Analysis of

Systems and Software, ISPASS 2019, Madison, WI, USA, March

24-26, 2019. IEEE, 2019, pp. 304–315. [Online]. Available:
https://doi.org/10.1109/ISPASS.2019.00042

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in Advances

in Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems 2019, NeurIPS 2019,

8-14 December 2019, Vancouver, BC, Canada, 2019, pp. 8024–
8035. [Online]. Available: http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library

[39] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. P. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,

2013, 2013, pp. 519–530. [Online]. Available: https://doi.org/10.1145/
2491956.2462176

[40] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016, 2016, pp. 779–788. [Online].
Available: https://doi.org/10.1109/CVPR.2016.91

[41] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[42] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN:
towards real-time object detection with region proposal networks,”
in Advances in Neural Information Processing Systems 28: Annual

Conference on Neural Information Processing Systems 2015, December

7-12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 91–
99. [Online]. Available: http://papers.nips.cc/paper/5638-faster-r-cnn-
towards-real-time-object-detection-with-region-proposal-networks

[43] J. Roesch, S. Lyubomirsky, M. Kirisame, J. Pollock, L. Weber, Z. Jiang,
T. Chen, T. Moreau, and Z. Tatlock, “Relay: A high-level IR for
deep learning,” CoRR, vol. abs/1904.08368, 2019. [Online]. Available:
http://arxiv.org/abs/1904.08368

[44] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. R. Pinckney, P. Raina, S. G. Tell,
Y. Zhang, W. J. Dally, J. S. Emer, C. T. Gray, B. Khailany, and
S. W. Keckler, “Simba: Scaling deep-learning inference with multi-
chip-module-based architecture,” in Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO

2019, Columbus, OH, USA, October 12-16, 2019. ACM, 2019, pp.
14–27. [Online]. Available: https://doi.org/10.1145/3352460.3358302

[45] M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra:
Exploiting predictability to optimize deep learning,” in Proceedings of

the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2019,

Providence, RI, USA, April 13-17, 2019, I. Bahar, M. Herlihy,
E. Witchel, and A. R. Lebeck, Eds. ACM, 2019, pp. 909–923.
[Online]. Available: https://doi.org/10.1145/3297858.3304072

[46] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai,
T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit,
M. Lucic, and A. Dosovitskiy, “Mlp-mixer: An all-mlp architecture
for vision,” CoRR, vol. abs/2105.01601, 2021. [Online]. Available:
https://arxiv.org/abs/2105.01601

[47] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor
comprehensions: Framework-agnostic high-performance machine
learning abstractions,” CoRR, vol. abs/1802.04730, 2018. [Online].
Available: http://arxiv.org/abs/1802.04730

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

neural information processing systems, vol. 30, pp. 5998–6008, 2017.
[49] M. Wahib and N. Maruyama, “Scalable kernel fusion for memory-bound

GPU applications,” in International Conference for High Performance

Computing, Networking, Storage and Analysis, SC 2014, New Orleans,

LA, USA, November 16-21, 2014, T. Damkroger and J. J. Dongarra,
Eds. IEEE Computer Society, 2014, pp. 191–202. [Online]. Available:
https://doi.org/10.1109/SC.2014.21

[50] X. Wang, G. Li, X. Dong, J. Li, L. Liu, and X. Feng, “Accelerating deep
learning inference with cross-layer data reuse on gpus,” in Euro-Par

2020: Parallel Processing - 26th International Conference on Parallel

and Distributed Computing, Warsaw, Poland, August 24-28, 2020,

Proceedings, ser. Lecture Notes in Computer Science, M. Malawski
and K. Rzadca, Eds., vol. 12247. Springer, 2020, pp. 219–233.
[Online]. Available: https://doi.org/10.1007/978-3-030-57675-2\ 14

[51] P. N. Whatmough, C. Zhou, P. Hansen, S. K. Venkataramanaiah,
J. Seo, and M. Mattina, “Fixynn: Energy-efficient real-time mobile
computer vision hardware acceleration via transfer learning,” in
Proceedings of Machine Learning and Systems 2019, MLSys 2019,

Stanford, CA, USA, March 31 - April 2, 2019, A. Talwalkar,
V. Smith, and M. Zaharia, Eds. mlsys.org, 2019. [Online]. Available:
https://proceedings.mlsys.org/book/281.pdf

[52] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y. Tai, “Exploring
heterogeneous algorithms for accelerating deep convolutional neural
networks on fpgas,” in Proceedings of the 54th Annual Design

Automation Conference, DAC 2017, Austin, TX, USA, June 18-

22, 2017. ACM, 2017, pp. 62:1–62:6. [Online]. Available: https:
//doi.org/10.1145/3061639.3062244

[53] Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang,
“HASCO: towards agile hardware and software co-design for tensor
computation,” in 48th ACM/IEEE Annual International Symposium

on Computer Architecture, ISCA 2021, Valencia, Spain, June

14-18, 2021. IEEE, 2021, pp. 1055–1068. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00086

[54] J. Xing, L. Wang, S. Zhang, J. Chen, A. Chen, and Y. Zhu,
“Bolt: Bridging the gap between auto-tuners and hardware-native
performance,” in Proceedings of Machine Learning and Systems

2022, MLSys 2022, Santa Clara, CA, USA, August 29 - September

1, 2022, D. Marculescu, Y. Chi, and C. Wu, Eds. mlsys.org,
2022. [Online]. Available: https://proceedings.mlsys.org/paper/2022/
hash/38b3eff8baf56627478ec76a704e9b52-Abstract.html

[55] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using
halide’s scheduling language to analyze DNN accelerators,” in ASPLOS

’20: Architectural Support for Programming Languages and Operating

Systems, Lausanne, Switzerland, March 16-20, 2020, J. R. Larus,
L. Ceze, and K. Strauss, Eds. ACM, 2020, pp. 369–383. [Online].
Available: https://doi.org/10.1145/3373376.3378514

[56] J. Zhao, B. Li, W. Nie, Z. Geng, R. Zhang, X. Gao, B. Cheng, C. Wu,
Y. Cheng, Z. Li, P. Di, K. Zhang, and X. Jin, “AKG: automatic
kernel generation for neural processing units using polyhedral
transformations,” in PLDI ’21: 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation,

Virtual Event, Canada, June 20-25, 20211, S. N. Freund and
E. Yahav, Eds. ACM, 2021, pp. 1233–1248. [Online]. Available:
https://doi.org/10.1145/3453483.3454106

[57] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali,
Y. Wang, J. Yang, D. Zhuo, K. Sen, J. E. Gonzalez, and
I. Stoica, “Ansor: Generating high-performance tensor programs for
deep learning,” in 14th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2020, Virtual Event, November 4-6,

2020. USENIX Association, 2020, pp. 863–879. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/zheng

[58] S. Zheng, X. Zhang, L. Liu, S. Wei, and S. Yin, “Atomic
dataflow based graph-level workload orchestration for scalable
DNN accelerators,” in IEEE International Symposium on High-

Performance Computer Architecture, HPCA 2022, Seoul, South Korea,

April 2-6, 2022. IEEE, 2022, pp. 475–489. [Online]. Available:
https://doi.org/10.1109/HPCA53966.2022.00042

[59] S. Zheng, R. Chen, Y. Jin, A. Wei, B. Wu, X. Li, S. Yan, and Y. Liang,
“Neoflow: A flexible framework for enabling efficient compilation for
high performance dnn training,” IEEE Transactions on Parallel and

Distributed Systems, 2021.
[60] S. Zheng, R. Chen, A. Wei, Y. Jin, Q. Han, L. Lu, B. Wu, X. Li,

S. Yan, and Y. Liang, “AMOS: enabling automatic mapping for tensor
computations on spatial accelerators with hardware abstraction,” in
ISCA ’22: The 49th Annual International Symposium on Computer

Architecture, New York, New York, USA, June 18 - 22, 2022,
V. Salapura, M. Zahran, F. Chong, and L. Tang, Eds. ACM, 2022, pp.
874–887. [Online]. Available: https://doi.org/10.1145/3470496.3527440

[61] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system,” in ASPLOS ’20:

Architectural Support for Programming Languages and Operating

Systems, Lausanne, Switzerland, March 16-20, 2020 [ASPLOS 2020

was canceled because of COVID-19], J. R. Larus, L. Ceze, and
K. Strauss, Eds. ACM, 2020, pp. 859–873. [Online]. Available:
https://doi.org/10.1145/3373376.3378508

[62] Z. Zheng, C. Oh, J. Zhai, X. Shen, Y. Yi, and W. Chen, “Versapipe:
a versatile programming framework for pipelined computing on
GPU,” in Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 2017, Cambridge, MA, USA,

October 14-18, 2017, H. C. Hunter, J. Moreno, J. S. Emer, and
D. Sánchez, Eds. ACM, 2017, pp. 587–599. [Online]. Available:
https://doi.org/10.1145/3123939.3123978

[63] Z. Zheng, X. Yang, P. Zhao, G. Long, K. Zhu, F. Zhu, W. Zhao,
X. Liu, J. Yang, J. Zhai, S. L. Song, and W. Lin, “Astitch: enabling
a new multi-dimensional optimization space for memory-intensive
ML training and inference on modern SIMT architectures,” in
ASPLOS ’22: 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Lausanne,

Switzerland, 28 February 2022 - 4 March 2022, B. Falsafi, M. Ferdman,
S. Lu, and T. F. Wenisch, Eds. ACM, 2022, pp. 359–373. [Online].
Available: https://doi.org/10.1145/3503222.3507723

[64] Z. Zheng, P. Zhao, G. Long, F. Zhu, K. Zhu, W. Zhao, L. Diao, J. Yang,
and W. Lin, “Fusionstitching: boosting memory intensive computations
for deep learning workloads,” arXiv preprint arXiv:2009.10924, 2020.

[65] H. Zhu, R. Wu, Y. Diao, S. Ke, H. Li, C. Zhang, J. Xue, L. Ma,
Y. Xia, W. Cui et al., “{ROLLER}: Fast and efficient tensor compilation
for deep learning,” in 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22), 2022, pp. 233–248.

