
SuSy: A Programming Model for Productive Construction of
High-Performance Systolic Arrays on FPGAs

Yi-Hsiang Lai1∗, Hongbo Rong2∗∗, Size Zheng3, Weihao Zhang4, Xiuping Cui3, Yunshan Jia3, Jie
Wang5, Brendan Sullivan1, Zhiru Zhang1∗, Yun Liang3, Youhui Zhang4, Jason Cong5, Nithin

George2, Jose Alvarez2, Christopher Hughes2, Pradeep Dubey2

1 School of Electrical and Computer Engineering, Cornell University, USA
2 Intel, USA 3 Peking University, China 4 Tsinghua University, China

5 Computer Science Department, University of California, Los Angeles, USA
*{yl2666,zhiruz}@cornell.edu**hongbo.rong@intel.com

ABSTRACT
Systolic algorithms are one of the killer applications on spatial
architectures such as FPGAs and CGRAs. However, it requires a
tremendous amount of human effort to design and implement a
high-performance systolic array for a given algorithm using the
traditional RTL-based methodology. On the other hand, existing
high-level synthesis (HLS) tools either (1) force the programmers to
do “micro-coding” where too many optimizations must be carried
out through tedious code restructuring and insertion of vendor-
specific pragmas, or (2) give them too little control to influence a
push-button compilation flow to achieve high quality of results.

To tackle these challenges, we introduce SuSy, a programming
framework composed of a domain-specific language (DSL) and a
compilation flow that enables programmers to productively build
high-performance systolic arrays on FPGAs. With SuSy, program-
mers express the design functionality in the form of uniform recur-
rence equations (UREs), which can describe algorithms from a wide
spectrum of applications as long as the underlying computation
has a uniform dependence structure. The URE description in SuSy
is followed by a set of decoupled spatial mapping primitives that
specify how to map the equations to a spatial architecture. More
concretely, programmers can apply space-time transformations
and several other memory and I/O optimizations to build a highly
efficient systolic architecture productively. Experimental results
show that SuSy can describe various algorithms with UREs and
generate high-performance systolic arrays by spatial optimizations.
For instance, the SGEMM benchmark written in SuSy can approach
the performance of the manual design optimized by experts, while
using 30× fewer lines of code.
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1 INTRODUCTION
Systolic algorithms have been extensively studied and employed
in many important application domains such as bioinformatics,
image processing, linear algebra, machine learning, and relational
database [7, 9, 12, 14, 18, 20, 26, 33]. In a systolic algorithm, the
dependence structure is uniform, where every data dependence has
a constant distance. Mapping such dependence structures to spatial
architectures lead to near-neighbor connections. The connected
processing elements (PEs) jointly compose a systolic array that
works rhythmically — at every time step, each PE reads inputs from
some neighbors, performs computation, and forwards the inputs
and results to other neighbors [17].

The characteristics of near-neighbor connections make systolic
arrays a great match for FPGAs, where it is particularly important
to minimize long interconnects to meet the target clock frequency.
Indeed recent years have seen a growing number of application-
specific systolic arrays implemented on modern FPGAs for efficient
compute acceleration [5, 8, 12, 26, 33]. While systolic arrays typi-
cally have a very regular structure, it is far from trivial to achieve
high performance unless the following optimizations are carried
out: 1) finding an efficient mapping between a systolic algorithm
and the physical array, 2) building an input/output (I/O) network
to transfer data within the bandwidth limit, 3) constructing cus-
tomized on-chip storage for data reuse, 4) vectorizing data accesses
to better utilize the off-chip memory bandwidth, and 5) pipelining
control signals to further increase throughput.

Obviously, any of the above optimizations would require substan-
tial effort using the traditional RTL-based design methodology. The
introduction of high-level synthesis (HLS) helps raise the level of
design abstraction and hence increase productivity [4]. However, it
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remains challenging to strike the right balance between design qual-
ity and productivity using the existing HLS tools. To achieve high
quality of results (QoRs), HLS users often have to perform “micro-
coding”, where some of the low-level micro-architectural details
must be explicitly described and mixed into the behavioral specifi-
cation that is supposed to be algorithmic and target-independent.
In fact, it is not uncommon for HLS experts in the industry to spend
several months on building a high-performance systolic array ar-
chitecture, even for a seemingly simple computation [30]. Some
of the recent HLS research has proposed end-to-end compilation
flow to generate application-specific systolic arrays from C/C++
programs in a push-button manner [2, 5, 11, 31]. This approach
allows programmers to focus on the algorithms, while the compiler
automatically explores the design space and generates systolic ar-
rays. Unfortunately, the existing methods either lack support for
key optimizations (e.g., vectorization and I/O isolation) or fail to
support a general class of systolic algorithms.

There exists another line of work that further raises the ab-
straction level of FPGA programming by using domain-specific
languages (DSLs) [1, 16, 21, 25, 27, 32]. One recent example is Het-
eroCL [21], a Python-based embedded DSL that provides a back
end for mapping designs to systolic arrays. It is worth noting that
systolic array support in HeteroCL also employs a push-button
compilation flow and shares the same problems as other systolic
compilers mentioned earlier. Another example is T2S-Tensor [32],
which is a DSL built on Halide [29] that generates high-performance
systolic arrays. With the T2S-Tensor DSL, programmers can pro-
ductively explore different optimizations with decoupled temporal
definition and spatial mappings. However, this DSL is restricted to
dense tensor computations.

Along this line, we propose SuSy, a programming framework
built upon Halide [29] for productively building high-performance
systolic arrays on FPGAs. SuSy decouples the algorithm specifica-
tion from spatial optimizations, where the former can concisely
express any systolic algorithm while the latter can describe essen-
tial optimizations for systolic arrays. Figure 1 provides a high-level
overview of the proposed framework. The input program is spec-
ified in the SuSy DSL, which is composed of (1) an algorithm (or
temporal definition) expressed in uniform recurrence equations
(UREs) and (2) decoupled spatial optimization. The SuSy compiler
lowers the input to an intermediate representation (IR) extended
from Halide, where we perform user-specified optimizations and
several target-specific transformations. The compiler then produces
the HLS code (in OpenCL) as output, which is eventually compiled
to bitstream for FPGA execution. Our main technical contributions
are summarized as follows:

• This work is the first to demonstrate that high-performance
customized systolic arrays can be built with many optimiza-
tions succinctly expressed in a DSL that is not tied to a specific
application domain. The proposed SuSy DSL provides a clean
programmingmodel that decouples temporal algorithmic defini-
tions from spatial mappings. Notably, the URE-based temporal
specification can model a rich set of systolic algorithms used
in many different applications. Examples include the Smith-
Waterman algorithm in bioinformatics, convolution in deep
learning, matrix multiplication in linear algebra, and sorting.

#define P i, j, k
Var i, j, k;
ImageParam A(type_of<int>(), 2), B(type_of<int>(), 2); 
Func X(Int(32), {P}), Y(Int(32), {P}), Z(Int(32), {P}), C;
X(P) = select(j == 0, A(i, k), X(i, j-1, k));
Y(P) = select(i == 0, B(k, j), Y(i-1, j, k));
Z(P) = select(k == 0, 0, Z(i, j, k-1)) + X(P) * Y(P);
C(i, j) = select(k == K - 1, Z(P));
X.merge_ures(Y, Z, C);

Func AFeeder, BFeeder, CDrainer, CCollector;
X.space_time_transform(i, j)
.vectorize(k);
.isolate_producer(A, AFeeder)
.isolate_producer(B, BFeeder)
.isolate_consumer_chain(c, CDrainer, CCollector);

AFeeder.scatter(i).buffer(A, i);
BFeeder.scatter(j).buffer(B, j);
CDrainer.gather(j);
CCollector.gather(i);

Temporal Definition
With UREs

Spatial Optimizations
• Space-Time Transform
• I/O Network
• Vectorization
• Reuse Buffers
• Etc.

Extended Halide IR

HLS Code

SuSy DSL

FPGA

Target-Specific Optimization
• Loop Flattening
• Loop Infinitization

Figure 1: Overview of the SuSy programming framework.

• We introduce in SuSy an explicit and concise representation of
space-time transformation, which allows the programmers to
explore the trade-offs between performance and area with vari-
ous temporal scheduling on different shapes of systolic arrays.
In addition, SuSy further supports several essential spatial opti-
mizations for building highly efficient systolic arrays, including
vectorization, customized reuse buffer, data gathering/scatter-
ing for the I/O network.

• We have developed a comprehensive compilation flow target-
ing Intel FPGAs for SuSy. Experimental results show that SuSy
can close the expert-designer performance gap on widely used
compute kernels such as SGEMM, convolution, and Smith-
Waterman. For dense tensor computations, we achieve more
than 96%DSP efficiency.While for Smith-Waterman, we achieve
6.3× higher performance over a state-of-the-art framework.
The remainder of this paper is organized as follows: Section 2

provides the background knowledge for SuSy through examples;
Sections 3 and 4 explain the programming model and the compila-
tion flow in detail respectively; we report the evaluation results in
Section 5 and compare with previous work in Section 6; Section 7
concludes this work and outlines future research directions.

2 BACKGROUND
This section introduces the concepts of UREs and space-time trans-
formations, and provides two illustrating examples.

2.1 Uniform Recurrence Equations (UREs)
Given an𝑛-dimensional iteration space𝐷 , a system of UREs consists
of a set of recurrence equations expressed in the following form [15]:

𝑉𝑖 (𝑧) = 𝑓 (𝑉1 (𝑧 − 𝑑1),𝑉2 (𝑧 − 𝑑2), ...,𝑉𝑝 (𝑧 − 𝑑𝑝 )), for 𝑧 ∈ 𝐷
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where 𝑉1,𝑉2, ...,𝑉𝑝 are variables, 𝑓 is an arbitrary function, 𝑧 is
an 𝑛-dimensional vector representing a computation point (i.e.,
an iteration) in 𝐷 , and 𝑑𝑖 is an 𝑛-dimensional constant vector
representing the distance from 𝑧. Basically, the UREs collectively
represent an 𝑛-dimensional perfectly nested loop with constant
dependence distances.

UREs have been extensively used in many programming frame-
works for generating systolic arrays. The main reasons are twofold:
1) they are general and expressive enough to describe probably
most systolic algorithms [23, 28, 35], and 2) they can specify both
computation and data flow, which exposes more optimization op-
portunities to the compiler and programmers [22].

1 // select(cond, then_case, else_case) = then_case if cond is true
2 // otherwise it returns else_case (if provided)
3 for (k = 0; k < K; k++)
4 for (j = 0; j < J; j++)
5 for (i = 0; i < I; i++)
6 // URE for computing the multiplication and accumulation
7 Z(i, j, k) = select(k == 0, 0, Z(i, j, k-1)) + A(i, k)*B(k, j);
8 // Assign results to the output C
9 C(i, j) = select(k == K - 1, Z(i, j, k));

(a) GEMM
1 // MAX = maximum possible value
2 for (i = 0; i < N; i++)
3 for (j = 0; j < N; j++)
4 X(i, j) = select(j == 0,
5 max(A(i), select(i == 0, MAX, Y(i-1, j))),
6 select(i >= j, max(X(i, j-1), Y(i-1, j))));
7 Y(i, j) = select(i == j,
8 select(j == 0, A(i), X(i, j-1)),
9 select(i > j, min(select(j == 0, A(i), X(i, j-1)),
10 select(i == 0, MAX, Y(i-1, j)))));
11 B(j) = select(i == N-1, Y(i, j));

(b) Insertion sort
Figure 2: Examples of using UREs.

Here we show two examples of UREs in Figure 2 along with the
loop nests representing the iteration space. In Figure 2a, a general
matrix multiplication (GEMM) kernel is described with UREs. In
this example, we calculate C = A×B, where A is an I×K matrix, B is
a K×J matrix, and C is an I×J matrix. We use a single URE (L7) to
describe the multiplication and accumulation, where we have one
variable Z in a 3-dimensional domain (i, j, k) for storing the
partial sum. After the calculation completes, we assign the results
to output C in L9. Note that if the select expression does not have
a false case, nothing is performed should the condition fail. Another
example is shown in Figure 2b, where we perform insertion sort
on an input vector A and store the final output in B. Here we have
two UREs (L4-L10) with variable Y storing the sorted results after
step j and X being an auxiliary variable. From these two examples,
we can see that as long as an algorithm has constant dependence
distances, we can describe it using UREs.

2.2 Space-Time Transformation
UREs alone only describe the function of the systolic algorithm
without providing any spatial information. To build a systolic array
from UREs, we need to determine the mapping between the domain
of the UREs and the physical array dimensions. Space-time transfor-
mation [19, 22] is in essence a loop transformation that specifies the
mapping. To be more specific, the transformation maps an 𝑛-deep
loop nest to a time loop and 𝑛 − 1 space loops. The space loops are
mapped to different PEs, and the time loop is used to schedule the

1 // t = k + j + i
2 time for (t = 0; t < I+J+K-2; t++)
3 space for (j = 0; j < J; j++)
4 space for (i = 0; i < I; i++)
5 // recover the original loop variable before transformation
6 k = t - j - i;
7 // only compute if it is in the original domain
8 if (0 <= k < K)
9 // we use the last dimension to represent the time distance
10 Z(i, j, 0) = select(k == 0, 0, Z(i, j, 1)) + A(i, k) * B(k, j);
11 C(i, j) = select(k == K - 1, Z(i, j, 0));

(a) Loop structure after space-time transformation.

Z(0, 0, k) Z(1, 0 , k)

Z(0, 1 , k)

C(0, 0)

C(0, 1)

…

Z(1, 1 , k)

A(1, 0)

…

…

…

t = k t = k+1

C(1, 0)

C(1, 1)

j

i

B(k, 0)

B(k, 1)

A(0, k) A(1, k) t = k+2

(b) Mapped systolic arrays.
Figure 3: Example of applying space-time transformation to
GEMM UREs.

original iterations to run on the PEs. The transformation can be
described by a transformation matrix 𝑇 :

𝑇 =

(
Π
𝜏

)
,

where 𝜏 is a scheduling vector that generates the time loop and Π
is an (𝑛 − 1) × 𝑛 projection matrix that generates space loops. A
transformation matrix is valid only if it preserves the data depen-
dence, and if no two iterations are scheduled to run on the same
PE at the same time. In this work, we always set the projection
matrix Π to be an identity matrix. This is a common practice when
experts manually build systolic arrays [12, 26]. The support for
non-identity projection matrices is left as future work.

Figure 3 shows an example of applying space-time transforma-
tion to the UREs in Figure 2a, where

𝑇 =
©«
100
010
111

ª®¬ , 𝜏 =
(
111

)
,Π =

(
100
010

)
.

If we take a look at the loop structure after the transformation
(Figure 3a), loops i and j become space loops and loop k is replaced
with a time loop t. In other words, after transformation, we have a
total of 𝐼 × 𝐽 PEs. Then, we need to check if the data dependence
is still preserved by calculating new distances, which can be done
by multiplying 𝑇 with the distance vector. For example, the new
distance of Z(i, j, k-1) can be calculated by

( 100
010
111

) ( 0
0
1

)
=

( 0
0
1

)
.

This is a positive dependence vector, and thus the original data
dependence is preserved [22]. 1

1Traditionally, all data dependence should be strongly satisfied for time loops (i.e., the
dependence distance should be greater than zero). However, such a transformation
usually introduces loop skewing that leads to complicated hardware. In SuSy, we allow
the dependence to be weakly satisfied (i.e., the dependence distance could be zero) and
let the hardware compiler take over the scheduling of PEs.
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1 for (k = 0; k < K; k++)
2 for (j = 0; j < J; j++)
3 for (i = 0; i < I; i++)
4 // UREs for reusing the inputs
5 X(i, j, k) = select(j == 0, A(i, k), X(i, j-1, k));
6 Y(i, j, k) = select(i == 0, B(k, j), Y(i-1, j, k));
7 // URE for computing the product and accumulation
8 Z(i, j, k) = select(k == 0, 0,
9 Z(i, j, k-1)) + X(i, j, k)*Y(i, j, k);
10 // Assign results to the output C
11 C(i, j) = select(k == K - 1, Z(i, j, k));

(a) New UREs with input data reuse.

Z(0, 0, k) Z(1, 0, k)
Y(0, 0, k)

Z(0, 1, k)

X(0, 0, k)

C(0, 0)

C(0, 1)

X(0, 1, k)

…

Z(1, 1, k)
Y(0, 1, k)

X(1, 0, k)

X(1, 1, k)

…

…

…

Y(1, 0, k)

C(1, 0)

C(1, 1)

Y(1, 1, k)

j

i

B(k, 0)

B(k, 1)

A(0, k) A(1, k)

(b) Mapped systolic arrays.

Figure 4: Example of modifying UREs with data reuse.

We also need to make sure the computation after transformation
lies in the original domain by recovering the original loop indices
and adding a check (L5-8). We can now easily map the computation
into a 2-D systolic array, as shown in Figure 3b, where the red lines
represent the communication with I/O and the dotted blue lines
represent the time schedule.

2.3 Design Space Exploration
In this section, we demonstrate howwe can explore different design
choices by combining UREs and space-time transformation. As can
be seen in Figure 3b, inputs A and B are broadcast to all PEs, which is
not scalable. To solve this, we can reuse the inputs by sending them
through neighbor PEs. We can describe such data flow between PEs
by modifying the UREs (Figure 4).

Figure 4a shows the new set of UREs with data reuse by introduc-
ing two new equations in L5-6. Specifically, variables X and Y store
the values of inputs A and B, respectively. After applying the same
space-time transformation, the mapped systolic array is shown
in Figure 4b, where the black lines represent the communication
between PEs. This simple example demonstrates how UREs provide
programmers more flexibility when exploring the design space. Sim-
ilarly, by choosing different transformation matrices, programmers
can explore the trade-offs between area and performance.

3 THE PROGRAMMING MODEL
The SuSy programming model is built upon Halide [29], and the
main reasons are as follows: 1) The Halide DSL cleanly decouples
the algorithm specification and temporal schedule. In SuSy, we
inherit the same concept by decoupling the temporal definition
from spatial optimizations, allowing programmers to efficiently
explore different design choices without modifying the algorithm
definition. 2) Halide abstracts algorithms composed of multi-level
loop nests with declarative programming, which is a good fit for
UREs because of the underlying multi-dimensional iteration space.
The bounds can either be inferred from the input shapes or explicitly

specified by the users. 3) Halide provides a concise yet expressive IR,
which can be easily extended for describing optimizations required
to generate high-performance systolic arrays.

In this section, we explain the SuSy programming model in detail.
We first explain how we use UREs to describe temporal definitions
in Section 3.1. Then we demonstrate how we apply a set of spatial
optimizations in Section 3.2. For better illustration, we continue to
use the GEMM example.

3.1 Temporal Definition
In SuSy, we extend Halide to express UREs, since the original Halide
syntax does not support recurrent functions.

1 // Define the inputs with integer type and two dimensions
2 ImageParam A(type_of<int>(), 2);
3 ImageParam B(type_of<int>(), 2);
4 // Extend Halide's syntax for describing data type and placement
5 // We use C macros to simplify the code
6 #define ftype Int(32), {i, j, k}, Place::Device
7 Var i, j, k;
8 Func X(ftype), Y(ftype), Z(ftype), C;
9 X(i, j, k) = select(j == 0, A(i, k), X(i, j-1, k));
10 Y(i, j, k) = select(i == 0, B(k, j), Y(i-1, j, k));
11 Z(i, j, k) = select(k == 0, 0,
12 Z(i, j, k-1)) + X(i, j, k)*Y(i, j, k);
13 C(i, j) = select(k == K - 1, Z(i, j, k));

Figure 5: Describing UREs for GEMM in SuSy.

We show an example in Figure 5, where we describe the UREs for
GEMM.Wefirst declare the inputmatrices A and Bwith ImageParam,
where we specify the data type and the number of dimensions (L2-
3). Currently, SuSy supports the same set of data types as Halide
(i.e., 64/32-bit float and 64/32/16/8-bit integer types). Then we define
the iteration space and variables with Var and Func, respectively
(L6-8). Unlike Halide, programmers can specify the data placement
with either Place::Device (i.e., FPGA) or Place::Host (i.e., CPU).
Since we offload the entire application to the FPGA, we choose
Place::Device for all variables. We write down the UREs in L9-13
by referencing Figure 4a. With the declarative programming style,
programmers do not need to explicitly write down the loop nests.

3.2 Spatial Optimization
After describing the temporal definition with UREs, we need to
specify how we map them to systolic arrays as well as other spatial
optimizations. With the decoupled programming style, users can
efficiently apply different spatial mappings by using the SuSy prim-
itives (or scheduling functions in terms of Halide). In this section, we
describe the syntax and semantics of selected primitives in detail.
Table 1 shows the set of primitives we currently support.

Space-Time Transformation – As we have described in Sec-
tion 2, to map UREs to a physical systolic array, we need to perform
space-time transformation. An example is shown in Figure 6.

1 X.merge_ures(Y, Z, C);
2 X.space_time_transform({i, j}, // space loops
3 {0, 0, 1}); // scheduling vector

Figure 6: Primitive for specifying the transformation.

To specify the transformation in SuSy, we first need to define
the target set of UREs, which can be achieved by using the prim-
itive merge_ures (L1). Then we establish the transformation by
employing the primitive space_time_transform (L2-3), where the
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Table 1: Primitives for spatial optimizations in SuSy.
Primitive Description

F.merge_ures(U1, U2, ..., Un) Define the set of UREs F, U1, U2, ..., Un to optimize.

F.space_time_transform(space, tau) Specify the space-time transformation that will be applied to F, where space is the set of space loops, and tau is the scheduling
vector.

F.vectorize(var) Vectorize the specified loop variable var of F.

F.reorder(var1, var2, ..., varn) Reorder the loop nest for F according to the specified order, starting from the innermost level.

F.tile(var, varo, vari, factor) Tile the loop variable var of F into two new variables varo and vari with a factor of factor.

F.isolate_producer({E1, E2, ...}, P) Isolate a list of expressions {E1, E2, ...} (usually inputs) in F to a separate producer kernel P.

F.isolate_consumer(E, C) Isolate an expression E (usually an output) in F to a separate consumer kernel C.

F.remove(var) Remove loop var of F.

F.buffer(E, v, mode) Insert a reuse buffer at loop v for expression E with mode (either Buffer::Single or Buffer::Double).

F.scatter(E, var) Reduce data communication overhead (i.e., data broadcast) by scattering the expression E to the consumer along loop var.

F.gather(E, var) Reduce data communication overhead (i.e., data broadcast) by gathering the expression E from the producer along loop var.

first argument specifies the space loops, and the second argument
defines the scheduling vector. To better illustrate the optimizations
without losing the generality, here we use a simpler time schedule
than the one in Figure 3b. We omit the space matrix here since it
is an identity matrix as mentioned in Section 2.2. There are sev-
eral constraints to the arguments. First, only the inner-most loops
can be space loops. Otherwise, programmers need to perform loop
reordering with reorder before applying space-time transforma-
tion. Second, the transformation matrix must be valid in terms of
preserving the dependence.

Tiling and Vectorization – In most cases, the problem size
may be too large to fit the given hardware resources. To solve that,
we can tile the design and compute only the partial results of each
tile on-chip. In addition, with tiling, programmers can explore an-
other dimension of parallelism by applying vectorization, where we
compute a fixed-length of data at a single time. With vectorization,
we can perform vector loads/stores from/to the off-chip memory
to better utilize the off-chip memory bandwidth. An example is
shown in Figure 7a.

1 // Tile loop k with factor KI
2 X.tile(k, ko, ki, KI)
3 // Vectorize the inner loop
4 X.vectorize(ki);

(a) Vectorization

1 // Define the loaders and unloaders
2 Func A_Loader, B_Loader, C_Unloader;
3 // Isolate the inputs to loaders
4 X.isolate_producer(A, A_Loader)
5 .isolate_producer(B, B_Loader)
6 // Isolate the output to unloaders
7 .isolate_consumer(C, C_Unloader);

(b) Isolation

Figure 7: Applying vectorization and isolation in SuSy.

In this example, we first tile the k loop into ko and ki with a
factor of KI via the primitive tile (L2). Then, we vectorize the ki
loop in L4. After vectorization, we are computing a total of I×J×KI
computations in parallel.

Input/Output Isolation – To further improve the performance,
we can overlap the execution of the off-chip memory accesses with
on-chip computations so that the communication latency does not
throttle the overall throughput of the systolic array. We name such
an optimization as isolation, which is conceptualized in Figure 7b.

In the GEMM example, we have three off-chip memory accesses,
which are loading input values from A and B and unloading output
values to C. To isolate the access, we introduce new computation

stages – two loaders for reading the input values and one unloader
for writing the output values (L2). To describe the behavior, we
use the primitives isolate_producer to isolate inputs (L4-5) and
isolate_consumer to isolate outputs (L7). After isolation, the main
computation kernel reads/writes data from/to loaders/unloaders
instead of the off-chip memory.

Reuse Buffer Insertion – In many cases, we are loading re-
peated data from inputs due to the underlying iteration space. For
instance, in GEMM, input A only depends on loop i and k. However,
under the three-dimensional iteration space, we need to load the
same data for J times. To reduce the memory accesses, we can load
the data once from the off-chip memory and store it into an on-chip
reuse buffer. In other words, all succeeding data accesses will load
from the reuse buffer instead of the host memory. Figure 8a L2-3
show how we remove the loop with repeated access via remove
and insert a reuse buffer via buffer. Users can further specify the
loop level for inserting the buffer, which allows users to explore
the trade-off between area (buffer size) and throughput.

1 // Remove the reuse loop and insert double buffers
2 A_Loader.remove(j).buffer(A, j, Buffer::Double);
3 B_Loader.remove(i).buffer(B, i, Buffer::Double);

(a) Primitives for inserting reuse buffer.

Z(0, 0) Z(1, 0)
Y(0, 0)

Z(0, 1)

X(0, 0)

X(0, 1)

…

Z(1, 1)
B(0, 1)

X(1, 0)

X(1, 1)

…

…

…

Y(1, 0)

Y(1, 1)
j

i

B(k, 0)

B(k, 1)

A(0, k) A(1, k)

Loader w/ Buffer

C(0, 0)

C(0, 1)

C(1, 0)

C(1, 1)

Unloader

(b) Optimized systolic arrays.

Figure 8: Inserting reuse buffer to SuSy.

Finally, Figure 8b shows the systolic array after applying all
spatial optimizations mentioned above. After isolation and buffer
insertion, the main computation kernel reads input data from the
double buffers inside the loaders. Meanwhile, loaders read input
data from the off-chip memory.
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1 int srX[I][J][1], srY[I][J][1], srZ[I][J][2];
2 for (t = 0; t < K; t++)
3 // shift register logics
4 unrolled for (j = 0; j < J; j++)
5 unrolled for (i = 0; i < I; i++)
6 unrolled for (s = 0; s < 1; s++)
7 srZ(i, j, 1-s) = srZ(i, j, 0-s);
8 // no need to shift srA and srB
9 // computations
10 unrolled for (j = 0; j < J; j++)
11 unrolled for (i = 0; i < I; i++)
12 k = t;
13 srX(i, j, 0) = select(j==0, A(i, k), srX(i, j-1, 0));
14 srY(i, j, 0) = select(i==0, B(k, j), srY(i-1, j, 0));
15 srZ(i, j, 0) = select(k==0, 0, srZ(i, j, 1)) +
16 srX(i, j, 0) * srY(i, j, 0);
17 C(i, j) = select(k==K-1, srZ(i, j, 0));

(a) Equivalent HLS code.

0

+

✕

k == 0

k == K-1

srY(i-1, j, 0)
or B(k, j) srY(i, j, 0)

srX(i, j-1, 0) or A(i, k)

srX(i, j, 0)

srZ(i, j, 1)

C(i, j)

srZ(i, j, 0)

(b) Hardware architecture of PE(i, j).

Figure 9: Equivalent HLS code and corresponding PE archi-
tecture after performing space-time transformation in Fig-
ure 6 — In the hardware architecture, we can see that there are
three shift registers, which are srX, srY, and srZ respectively. For
srX and srY, they take values from either inputs or neighbor PEs
and send the values to the neighbor PEs. On the other hand, srZ is
updated with its previous value within the same PE and sends out
the results only when the accumulation is complete.

OtherOptimizations – SuSy provides several additional spatial
optimizations, including gathering/scattering and data serialization/de-
serialization. With gathering and scattering, we reduce the number
of connections between the systolic array and off-chip memory,
which makes our design more scalable. Meanwhile, data serializa-
tion improves the utilization of the off-chip memory bandwidth
by serializing data on the host before sending them to the systolic
array. Similarly, we can perform de-serialization after we collect
the results from the systolic array.

4 COMPILATION
In this section, we first explain the PE architecture generated by
SuSy. We then describe a few representative back-end specific op-
timizations that are automatically applied. We also briefly discuss
how we generate HLS code and deploy it to FPGAs.

PE Architecture – There are two ways for each PE to commu-
nicate with each other. First, they can communicate asynchronously
through channels. However, channels may introduce unnecessary
control overhead in hardware (e.g., handshaking). Therefore, SuSy
generates synchronous architecture using shift registers. Specifi-
cally, each PE is associated with several shift registers that store
the values of each variable (Figure 9b). For instance, variable X is
associated with a shift register srX. The equivalent loop structure
with shift registers is shown in Figure 9a, where we have three

shift register for the variables X, Y, and Z (L1). The shift register
size equals to the maximal time distance plus one. For example, the
maximal time distance for variable Z is one (L15) as described in
Section 2.2. Thus, the size of shift register srZ[i][j] for PE (i,j)
is two (L1). The registers are shifted at the beginning of each time
step (L3-8), right before we perform the computations (L10-16). In
addition, after space-time transformation, we mark the space loops
as unrolled while the time loops are pipelined automatically by the
HLS compiler.

Target-Specific Optimizations – The SuSy compiler also ap-
plies a set of optimizations automatically to further improve the
performance. These are designed for the back end we currently
target, namely, the Intel HLS tool. The specific optimizations in-
clude 1) loop flattening, which flattens a loop nest by combining
neighbor loops into a single loop to reduce the control overhead,
and 2) loop inifinitization, which replaces a flattened loop with a
while(1) loop to further reduce pipeline stalls.

Code Generation – We extend the Halide OpenCL code gen-
eration to generate Intel HLS code. Since data serialization, de-
serialization, and some low-level optimizations are still under de-
velopment at this stage, we manually implemented them by slightly
changing the generated HLS code. Then we push the code through
the Intel HLS compiler and downstream CAD tool flow to produce
the final bitstream that runs on the hardware.

5 EVALUATION
In this section, we evaluate the systolic arrays generated by SuSy.
All experiments are conducted on Intel vLab Academic Cluster [13],
equipped with Intel Xeon Platinum 8280 CPU (2.70 GHz) and Intel
Arria 10 GX FPGA. We first demonstrate the flexibility and produc-
tivity of SuSy by showing results on four benchmarks from differ-
ent application domains, including single-precision general matrix
multiplication (SGEMM), tensor-tensor multiplication (TTM), con-
volution (Conv), and Smith-Waterman (SW). We further provide
in-depth analysis on SGEMM, Conv, and SW, where we perform
quantitative comparison against existing frameworks such as Spa-
tial [16], HeteroCL [21], T2S-Tensor [32], and PolySA [5].

Table 2: Specifications of two FPGAs used in evaluation.
Intel Arria 10 GX Xilinx VU9P

Targeted By [32][33] [SuSy] [5][16][21]

Technology Node Intel 20nm TSMC 14nm/16nm

Soft Logic 427K ALMs 1,182K LUTs

DSPs 1,518 FP DSP 6,840 DSP48E2

BRAMs 2,713 2,160

Max Device Frequency 500 MHz 800 MHz

Table 2 lists the key characteristics of Intel Arria 10 GX and
Xilinx UltraScale+ VU9P; these two FPGA devices are used by the
relatedwork that we are comparing against in the remaining section.
Note that each single-precision floating-point (FP) multiplication
and accumulation (MAC) operation maps to one hardened FP DSP
on Intel Arria 10, whereas the same MAC operation consumes
five 27x18 DSP48E2 units on Xilinx Ultrascale+ VU9P. There are
6840 DSP48E2 units in total on VU9P, which roughly translates to
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6840/5=1368 Intel FP DSPs (vs. 1518 on Arria 10). Hence we argue
that these two FPGAs have a similar computation power in terms
of the peak throughput on MAC, although the Xilinx VU9P is listed
with a higher maximum device frequency.

Table 3: Evaluation results for benchmarks in SuSy.

Benchmark Problem Size LOC #ALMs #DSPs #BRAMs Freq.
(MHz)

SGEMM
[5][16][21][32] (1024, 1024, 1408) 25 40% 93% 32% 202

TTM
[32] (256, 64, 256, 352) 25 33% 93% 31% 209

Conv
[5][33]

3rd Layer of VGG-16
(64, 128, 112, 112, 3, 3) 28 35% 84% 30% 220

SW
[16][21] (1M, 128) 44 33% 0% 20% 225

General Evaluation – First, we evaluate the flexibility and pro-
ductivity of SuSy using four benchmarks, including SGEMM and
TTM in linear/tensor algebra, convolution in deep learning, and SW
from bioinformatics. Table 3 shows that we can describe a rich set
of systolic algorithms in SuSy, each with just tens of lines of code. If
we compare with related work in terms of the expressiveness, only
Spatial [16] and HeteroCL [21] can describe benchmarks that are
not dense tensor computations. However, these two frameworks
cannot achieve the same level of performance as SuSy. Another
existing framework PolySA [5], which is based on a polyhedral
compiler, can only handle algorithms without dynamic control
flows such as SGEMM and Conv. The work proposed by Wei et
al. [33] can generate highly efficient systolic arrays, but only for
convolutional neural networks.

In the following, we providemore detailed case studies on SGEMM,
Conv, and SW to compare SuSy and other frameworks.

Table 4: Performance impact of different spatial optimiza-
tions on a reduced SGEMM – We select a smaller input size
(512 × 512 × 512) and also a smaller systolic array (8 × 8 with a
vector length of 8 if applicable).

+ Space-Time
Transform + Vectorize + Isolate + Buffer

& Others

#LUTs/ALMs 28% 21% 33% 24%

#DSPs 4.2% 34% 34% 34%

#BRAMs 16% 20% 16% 19%

Frequency
(MHz) 250 203 225 259

Throughput
(GFLOPs) 2.29 18.8 52.8 255

DSP
Efficiency 7.2% 9.0% 23% 96%

Case Study: SGEMM – We first demonstrate how each spatial
optimization affects the performance by using a smaller problem
size (512 × 512 × 512) since, for large inputs, some of the design
variants can be time-consuming for bitstream generation or do not
even fit the device. In Table 4, we show not only the performance
numbers, but also the resource usage, frequency, and DSP efficiency.
To calculate the DSP efficiency, we divide the throughput by theo-
retical throughput, which is defined as #𝐷𝑆𝑃 × 2 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/𝐾 ,

where 𝐾 is a target-dependent constant. We set 𝐾 = 5 for VU9P
and 𝐾 = 1 for Arria 10.

From the table, we observe a trend of increasing throughput and
DSP efficiency after each optimization step. We select the design
with space-time transformation as our baseline, where we unroll
the space loops and map them to PEs. After applying vectoriza-
tion, a degradation of frequency occurs because the number of
PEs increases. However, the increased computation power covers
frequency degradation, and the throughput is consequently better.
After I/O isolation, both frequency and DSP efficiency are improved,
and the bottleneck now becomes the off-chip memory bandwidth.
Introducing reuse buffers and other optimizations such as data scat-
tering and gathering solve the issue (i.e., the DSP efficiency is now
close to 100%). With all optimizations combined, the throughput is
over 100× better than that of the baseline.

Table 5: Performance comparison for SGEMM.
Spatial
[16]

HeteroCL
[21]

PolySA
[5]

T2S-Tensor
[32]

Ninja
[32] SuSy

LOCs 44 16 7 20 750 25

Systolic Aarray No Yes Yes Yes Yes Yes

Target FPGA VU9P VU9P VU9P Arria10 Arria10 Arria10

#LUTs/ALMs 36% 52% 49% 50% 54% 40%

#DSPs 12% 58% 89% 84% 84% 93%

#BRAMs 23% 45% 89% 51% 39% 32%

Frequency
(MHz) 200 198 229 215 245 202

Throughput
(GFLOPs) 2.4 246 555 549 626 547

DSP
Efficiency 3.5% 79% 98% 99% 99% 96%

To further analyze the quality of results, we compare with other
programming frameworks, including Spatial, HeteroCL, PolySA,
and T2S-Tensor. We also compare with the Ninja implementa-
tion [32], which is written in HLS OpenCL by experts. We show
the results in Table 5.

To begin with, there exists a stark difference in performance
between the designs implemented without and with systolic arrays,
namely, Spatial versus other frameworks. Naturally, there also ex-
ists a gap between general-purpose frameworks (i.e., HeteroCL)
and those designed for generating systolic arrays (i.e., PolySA, T2S-
Tensor, and SuSy). Finally, SuSy achieves similar throughput and
DSP efficiency compared with other systolic array compilers spe-
cialized for certain application domains. Notably, SuSy achieves
87% of the throughput of the hand-written Ninja implementation,
while only using 30× fewer lines of code (LOC). Moreover, if we
compare on the same FPGA device (i.e., Arria 10), SuSy requires
much less resource usage in ALMs and BRAMs mainly because
we generate synchronous architectures with shift registers while
T2S-Tensor and the Ninja manual design adopt asynchronous ar-
chitectures with channels. As for PolySA, although it uses fewer
LOCs and achieves similar performance, it is not as general as SuSy,
as mentioned earlier.

Case Study: Convolutional Layer – We further compare the
quality of results among frameworks that generate high-performance
systolic arrays (Table 6). The design generated by Wei et al. [33]
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Table 6: Performance comparison for convolutional layer –
The array shape is interpreted as width × height × vector length.

PolySA [5] Wei et al. [33] SuSy

Target FPGA VU9P Arria 10 Arria 10

Systolic Array Shape 8 × 19 × 8 8 × 19 × 8 8 × 10 × 16
#LUTs/ALMs - (49%) - (57%) 150K (35%)

#DSPs - (89%) - (81%) 1,280 (84%)

#BRAMs - (71%) - (45%) 827 (30%)

Frequency (MHz) 229 253 220

Throughput (GFLOPs) 548 600 551

DSP Efficiency 98% 97% 98%

can achieve higher throughput at a higher frequency since their
framework is designed explicitly for convolutional neural networks
by mapping to manually optimized systolic array templates. How-
ever, this means they are not as general as SuSy. Moreover, under
the same problem size and similar systolic array size, there also
exists a reduction in resource usage similar to SGEMM. For PolySA,
we can reach the same conclusion as the previous case study.

Table 7: Performance comparison for Smith-Waterman.
Spatial [16] HeteroCL [21] SuSy

Target FPGA VU9P VU9P Arria 10

#LUTs/ALMs 330K (28%) 111K (9.4%) 139K (33%)

#DSPs 0 (0%) 0 (%) 0 (0%)

#BRAMs 1,409 (65%) 470 (22%) 539 (20%)

Frequency (MHz) 200 152 250

Throughput (GCUPs) 0.11 1.25 7.89

Case Study: Smith-Waterman Algorithm – In this final case
study, we compare the results with the two general-purpose frame-
works (i.e., Spatial and HeteroCL). For Smith-Waterman, the typical
performance metric is cell updates per second (CUPs), which can
be derived by dividing the number of cells (i.e., the product of the
lengths of the two input sequences) by the run time. Table 7 shows
that SuSy achieves more than 5× performance improvement com-
pared with HeteroCL and more than 70× improvement compared
with Spatial. In addition, we are running at a much higher frequency
because, with SuSy, we can explicitly skew the iteration space by
using space-time transformation to better pipeline the design.

6 RELATEDWORK
There exists a large body of literature on systolic array synthesis
that enables programmers to generate systolic arrays at a high
abstraction level [2, 5, 10, 11, 21, 24, 31–33].

Systolic array compilers with a push-button compilation
flow – Compilers such as [2, 5, 11, 31] provide an end-to-end flow
to generate systolic arrays without much user intervention. These
compilers select the space-time transformation and other neces-
sary optimizations based on built-in heuristics or automatic design
space exploration. While delivering high productivity, these com-
pilers usually fail to achieve high performance due to two major
reasons: incomplete optimization directives and design space. Many
optimizations are missing in the previous work. For example, vec-
torization and I/O isolation are missing in [2, 31]. Loop infinitization

is missing in PolySA [5]. The missing of such optimizations could
lead to sub-optimal designs. Apart from the compilers that target
general systolic algorithms, there are also efforts attempting to
generate domain-specific systolic arrays [8, 33]. For instance, Gem-
mini [8] and the framework proposed by Wei et al. [33] propose to
generate efficient systolic arrays for deep neural networks (DNNs).
Although both of them adopt configurable templates that generate
high-performance systolic arrays, they are limited to DNNs.

Systolic array compilers with user-guided optimizations –
In comparison, works such as MMAlpha [10] and T2S-Tensor [32]
take in user-specified optimizations. MMAlpha [10] is built upon
UREs and lets programmers specify the space-time transformation.
It supports both manual and automatic scheduling selection similar
to the works in the previous category. However, it lacks the support
for optimizations such as vectorization and reuse buffer insertion.
A more recent work T2S-Tensor [32] incorporates richer optimiza-
tions compared with MMAlpha. It is the first work that inherits
the principle to decouple the computation from the scheduling in
designing systolic arrays. Nonetheless, T2S-Tensor can only gen-
erate systolic arrays for dense tensor kernels. In addition to those
kernels, SuSy can generate systolic arrays for a much wider range
of applications with UREs. Moreover, users can explore a larger
design space with space-time transformation. Finally, by generating
synchronous hardware, we can largely reduce the resource usage.

General HLS compilers – Beyond generating systolic arrays,
there is also a plethora of work targeting implementing general
applications on FPGAs [3, 6, 16, 21, 34]. However, experimental
results show that there still exists a performance gap between such
frameworks and dedicated systolic array compilers like SuSy.

7 CONCLUSIONS AND FUTUREWORK
We have presented SuSy, a programming model for productively
building high-performance systolic arrays. With SuSy, program-
mers can describe any systolic algorithm with UREs and also effi-
ciently explore different spatial optimizations, such as space-time
transformation and reuse buffer insertion. Moreover, we provide
an end-to-end compilation flow targeting Intel FPGAs. Experiment
results show that we can indeed achieve high performance on not
only dense tensor kernels but also bioinformatics benchmarks. We
believe SuSy can bridge the gap between productivity and quality
of the development of systolic arrays on FPGAs.

We plan to release the proposed programming model in an open-
source format. Moreover, we will introduce more features to SuSy,
such as autotuning, reusing systolic arrays, and customized through-
put analysis. We also plan to extend SuSy to support more complex
benchmarks such as an entire deep learning model.
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