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ABSTRACT
With the increasing size of DNN models and the growing discrep-
ancy between compute performance and memory bandwidth, fus-
ing multiple layers together to reduce off-chip memory access has
become a popular approach in dataflow design. However, designing
such dataflows requires flexible and accurate performance mod-
els to facilitate evaluation, architecture analysis, and design space
exploration. Unfortunately, current state-of-the-art performance
models are limited to the dataflows of single operator acceleration,
making them inapplicable to operator fusion dataflows.

In this paper, we propose a framework called TileFlow that mod-
els dataflows for operator fusion. We first characterize the design
space of fusion dataflows as a 3D space encompassing compute
ordering, resource binding, and loop tiling. We then introduce a
tile-centric notation to express dataflow designs within this space.
Inspired by the tiling structure of fusion dataflows, we present a
tree-based approach to analyze two critical performance metrics:
data movement volume within the accelerator memory hierarchy
and accelerator compute/memory resource usage. Finally, we lever-
age these metrics to calculate latency and energy consumption. Our
evaluation validates TileFlow’s modeling accuracy against both real
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hardware and state-of-the-art performance models. We use Tile-
Flow to aid in fusion dataflow design and analysis, and it helps us
discover fusion dataflows that achieve an average runtime speedup
of 1.85× for self-attention and 1.28× for convolution chains com-
pared to the state-of-the-art dataflow.
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1 INTRODUCTION
Deep learning has made incredible strides over the last few years.
Different models with various layers have been proposed in the
areas of image classification [11, 19, 57, 59, 60], object detection [16,
17, 37, 50, 51] , image generation [27, 52, 83] , and natural language
processing [3, 10, 53, 61]. To accelerate the computation in DNN
models, various spatial accelerators [7, 12, 13, 23, 36, 39, 41] have
been proposed. Spatial accelerators employ processing engine (PE)
arrays to exploit data reuse and parallelism. Different spatial ac-
celerators use different dataflows for acceleration. Dataflow refers
to how to schedule data and computation in hardware resources
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over space and time. For example, Google TPU [23] uses weight-
stationary systolic arrays to accelerate matrix multiplication and
convolution; Sanger [39] proposes a score-stationary dataflow that
keeps sparse scores stationary in PE to accelerate sparse attention
layers.

However, as the discrepancy between the speed of on-chip com-
puting units and off-chip memory increases, the overhead of data
transfer between on-chip units and off-chip memory becomes a
bottleneck to performance [9, 79]. It is no longer sufficient to ac-
celerate one operator at a time. Instead, fusion dataflow that stages
the intermediate results in fast on-chip buffers to reduce off-chip
memory access overhead is becoming prevalent. A fusion dataflow
refers to the multi-operator execution plan that stages data spatially
and temporally from off-chip memory through on-chip memory
hierarchy to compute PEs [26]. And a dataflow for a specific input
shape with concrete tiling sizes is often called a mapping. For ex-
ample, Fused-Layer [2] proposes a tile-stationary dataflow to fuse
convolution operators by staging the intermediate image tiles in
on-chip memory; FLAT [26] designs different dataflows for self-
attention layers to stage a block of rows of data in on-chip memory
for softmax operator.

Designing fusion dataflows is challenging for three reasons. First,
it’s difficult to decide the order of memory access and compute op-
erations for different operators. The execution order determines the
reuse distance of intermediate data and thus determines the lifetime
and available memory resource for each intermediate data. Chang-
ing the order of two operators may also influence the execution
of other operators, resulting in a complex design space to explore.
Second, it’s non-trivial to decide hardware resource binding for
each operator in a fusion dataflow. There is a trade-off between
performance and resource usage. For example, pipelining differ-
ent layers provides good latency at the cost of high compute and
memory resource usage, while sequentially executing each layer
can alleviate resource pressure but results in a long latency. Third,
a high-performance dataflow requires a careful selection of tiling
loops and tiling factors to coordinate the memory access and com-
putation latency under hardware resource constraints. Manually
exploring the tiling space is impossible.

To design high-performance dataflows, performance models are
crucial. However, state-of-the-art performance models [31, 38, 45]
focus on single operator acceleration. These models fail to provide
flexible and accurate performance prediction for fusion dataflows.
On one hand, these models treat the computation of a single opera-
tor as a polyhedron of iterations and formulate the performance
prediction problem as calculating a polynomial composed of archi-
tecture parameters such as PE array size and workload parameters
such as iteration bounds. Therefore, we classify these models as
polyhedron-based. But the single polyhedron formulation is not
suitable for fusion dataflow because the iteration space of a fusion
dataflow is not perfectly nested. Fusion will insert the iteration
space of one operator into the iteration space of another operator,
forming imperfect loop nests. Other works [67, 72] modify existing
models to evaluate fusion dataflow performance by first modeling
each operator separately using the performance model and then
stripping the unneeded inter-operator data movement latency from
the results. We call these works graph-based because they only

consider the compute graph topology in modeling without con-
sideration for architecture details (e.g., memory hierarchy). This
approach also requires a great expertise in performance model
implementation and is only feasible when input workloads and
architecture specifications are known ahead of time, prohibiting
the exploration for new workloads or accelerator designs.

In this paper, we propose TileFlow, a framework for modeling
fusion dataflows on spatial accelerators. Our insight is that fusion
dataflow is not a perfect polyhedron, but is a tree structure. So
the modeling analysis should be designed for the tree structure as
well. To do this, we first clearly characterize the three dimensions
of fusion dataflow design space (compute ordering, resource bind-
ing, and loop tiling) in TileFlow. We propose to express different
dataflows in the 3D design space through a tile-centric notation,
which can be converted to an analysis tree for fusion dataflow.

Then, to analyze the fusion dataflow, we propose a tree-based
analysis approach to uniformly calculate the performance metrics
of fusion dataflows for general DNN layers. Data movement volume
calculation and resource usage are calculated from bottom to top
using the dataflow analysis tree. In detail, the dataflow analysis
tree is composed of tile nodes. A tile node represents a polyhedron
of iterations over its children nodes and it may also carry binding
information about the resource partition/sharing for its children
nodes. TileFlow calculates the data movement volume using the
tree structure, binding information, and tiling decisions for every
single tile (intra-tile) and every pair of tiles (inter-tile).

At last, based on these performance metrics, we can infer the
latency and energy with respect to architecture specifications. To
help design space exploration, we combine genetic algorithm and
Monte Carlo Tree Search to implement a searching algorithm in
TileFlow’s mapper. To the best of the authors’ knowledge, TileFlow
is the first framework that can systematically model the perfor-
mance of fusion dataflows for general DNN layers and customized
accelerator architectures. We also make TileFlow open-source in
Github (https://github.com/pku-liang/TileFlow). In summary, our
contributions are as follows:

• We clearly characterize the complete 3D design space for
fusion dataflows on spatial accelerators and provide a tile-
centric notation to express dataflow designs in the 3D space.

• We propose a tree-based analysis approach to calculate per-
formance critical metrics: data movement volume and re-
source usage.

• We implement the proposed modeling techniques into a
framework called TileFlow to help dataflow/mapping evalu-
ation, architecture analysis, and design space exploration.

In evaluation, TileFlow’s modeling accuracy is validated using
both real hardware and state-of-the-art performance model [45].
We use TileFlow to help fusion dataflow design and analysis. Tile-
Flow can find better dataflows that achieve 1.85× average runtime
speedup compared to state-of-the-art work [2, 26] for self-attention
and 1.28× speedup for convolution chains.

2 BACKGROUND
2.1 Spatial Accelerator Architecture
Spatial accelerators are often designed in a hierarchy. We show
a typical spatial accelerator architecture design in Figure 1 part
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𝑆 = 𝑄×𝐾
𝐿 =

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆)𝑄

𝐾

𝑉 𝐴 = 𝑉×𝐿

b) Self-attention Computation

c) Conv-chain Computation

𝑊1 𝑊2

𝐴𝑐𝑡 𝑂𝑢𝑡𝐼𝑚

Figure 1: Spatial accelerator architecture and the important
workloads in DNN models.

a). The innermost level is composed of processing engine (PE)
arrays that support various computation workloads such as matrix
multiplication, convolution, and vector operations at a small scale
(e.g., 16 × 16 × 16 matrix multiplication). The PE array has a fast
L0 buffer (e.g., register) to stage input/output data. Outer levels are
composed of multiple levels of on-chip memory hierarchy (𝐿1 - 𝐿𝑁
buffer) and the outermost level is off-chip memory (e.g., DRAM).
Commodity accelerators such as Tensor Core GPU [41], TPU [23],
and NPU [36] all use spatial architecture.

2.2 DNN Layers Fusion and Dataflow
As the DNN model size continues to grow, the performance bot-
tleneck switches to memory bandwidth for recent models such as
Transformer models [9, 79]. In Figure 1 part b) and part c), we show
two important workloads in DNN. In part b), it is a self-attention
layer composed of two batch matrix multiplications and one soft-
max operator (𝑆 = 𝑄 × 𝐾, 𝐿 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆), 𝐴 = 𝑉 × 𝐿). The inter-
mediate tensors 𝑆, 𝐿 are large and grow quadratically with input
sequence length. In part c), we show a convolution chain composed
of two convolutions (𝐴𝑐𝑡 = 𝐶𝑜𝑛𝑣 (𝐼𝑚,𝑊 1),𝑂𝑢𝑡 = 𝐶𝑜𝑛𝑣 (𝐴𝑐𝑡,𝑊 2)).
In many CNNs [55, 73], the intermediate tensor 𝐴𝑐𝑡 can also be
larger than both input and output tensors. The intermediate tensor
size expansion may make these DNN workloads memory-bound.

To alleviate the bottleneck in memory bandwidth, various fu-
sion dataflows have been proposed to stage intermediate results
in on-chip memory and reduce off-chip memory access. A fusion
dataflow refers to the execution plan about how to stage data from
off-chip memory through the on-chip memory hierarchy to com-
pute PEs [26]. Different dataflows may use different execution order,
resource binding, and loop tiling strategies, resulting in different
performance (e.g., latency and energy). For example, FLAT [26]
proposes a row-based dataflow for self-attention layer that stages
a fixed number of rows for the first batch matrix multiplication
(𝑆 = 𝑄 × 𝐾) and the softmax operator. We show the dataflow in
Figure 2 part a). Fused-Layer [2] proposes a tile-based dataflow for
convolution chains by staging a tile of intermediate results (𝐴𝑐𝑡 ) in
on-chip memory. We show the dataflow in Figure 2 part b).

𝑆 = 𝑄×𝐾 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆)

𝑄

𝑉

𝑉×𝐿

𝐾

a) Fusion Dataflow of FLAT

for b1, h1, m1 @L2
for b0, h0, m0, l, k @L1

S[b,h,m,l]+=Q[b,h,m,k]*K[b,h,k,l]
for b0, h0, m0, l @L1

L[b,h,m,l]=Softmax(S[b,h,m,l])
for b0, h0, m0, n, l @L1

A[b,h,m,n]+=L[b,h,m,l]*V[b,h,l,n]
Space of 
A = 𝑉×𝐿

Space of 
Softmax(S)

Space of 
S = Q×𝐾

for h1,w1 @L2
for h0, w0, r, s, c, l @L1

Act[h,w,l]+=
Im[h+r,w+s,c]*W1[r,s,c,l]

for h0, w0, u, v, l, k @L1
Out[h,w,k]+=

Act[h+u,w+v,l]*W2[u,v,l,k]
Space of Out

Space of 𝐴𝑐𝑡

b) Fusion Dataflow of Fused-Layer

𝑊1 𝑊2

𝐴𝑐𝑡 𝑂𝑢𝑡𝐼𝑚

Figure 2: Fusion dataflows of FLAT [26] and Fused-Layer [2].

2.3 Existing Dataflow Performance Models
Designing an efficient dataflow is challenging. To help dataflow de-
sign, various performancemodels have been proposed. Timeloop [45]
uses temporal/spatial notations to describe different dataflows on
customized architectures; MAESTRO [31] uses a data-centric no-
tation for dataflow expression and supports various operators in
DNN; TENET [38] uses relation-centric notation to provide accurate
latency estimation for tensor applications. These performance mod-
els focus on single operator acceleration. They abstract the DNN
layers as a polyhedron of iterations and treat a dataflow as a series
of transformations of the polyhedron over space and time. As a
result, performance modeling problem is formulated into the calcu-
lation of a set of polynomials composed of architecture parameters
(PE size, bandwidth, etc.) and workload parameters (inputs shape,
strides, etc.). We classify these performance models as polyhedron-
based. However, these models fail to model the performance of
fusion dataflows because, for a fusion dataflow, the iteration space
is not a perfect polyhedron. Fusing one operator (𝑂𝑝1) into another
operator (𝑂𝑝2) is to insert the iteration space of 𝑂𝑝1 into the iter-
ation space 𝑂𝑝2. So after fusion, the iteration space of the fused
workload is not perfectly nested.

Other lines of work [67, 72] handle fusion by first evaluating each
operator separately on polyhedron-basedmodels and then eliminate
unwanted inter-operator data transfer according to the DNN model
topology. We classify these works as graph-based. Such an approach
requires a lot of expertise in stripping out the unneeded inter-
operator data movement, which is error-prone and inflexible as
the specific workload and architecture parameters (e.g., bandwidth)
should be known ahead of time.

Compared to existing work [4, 14, 33], our TileFlow proposes to
use tree-based analysis to evaluate fusion dataflows. TileFlow uses a
tile-centric notation to express fusion dataflows so that an analysis
tree of the dataflow can be captured naturally. TileFlow can express
compute ordering, resource binding, and loop tiling (3D space) us-
ing the analysis tree. GCNAX [33] and OMEGA [14] are specially
designed to express and evaluate fusion dataflows for GNN [30].
They mainly consider loop tiling and ordering for dataflow mod-
eling (2D space). By contrast, TileFlow further includes resource
binding into the design space so that the accelerator’s on-chip
memory hierarchy can be modeled and evaluated.
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Figure 3: Overview of TileFlow.

SET [4] proposes to use resource allocation tree (RA tree) to
express inter-layer fusion dataflows with consideration of loop or-
dering and resource binding. Then, it decides the loop tiling through
intra-layer scheduling. However, SET’s design space is limited be-
cause it uses DNN layers as the scheduling unit and only allows
pipelining among mini-batches. As a result, SET’s design space is
between 2D (ordering and binding) and 3D (ordering, binding, and
tiling). By contrast, TileFlow can express the full 3D space via the
tile-centric notation. Each layer is split (at any possible dimension,
not limited to mini-batches) into tiles and the scheduling unit is
the tile. Therefore, different scheduling possibilities (e.g., pipelining
and parallelization) can be exploited among fine-grained tiles.

3 OVERVIEW OF TILEFLOW
The overall workflow of TileFlow is shown in Figure 3. TileFlow is
mainly composed of two parts: tile-centric notation and tree-based
analysis. The input of TileFlow is a DNN workload provided by the
user written in TileFlow’s tile-centric notation. We focus on dense
workloads in this paper. The tile-centric notation has complete
expressiveness in the 3D design space of fusion dataflow. Compute
ordering and loop tiling are expressed by the tile definition, while
resource binding is expressed by two kinds of primitives: intra-
tile primitives and inter-tile primitives. We explain the details in
Section 4.

A fusion dataflow expressed by tile-centric notations can be nat-
urally converted to an analysis tree. TileFlow then traverses the
analysis tree to calculate performance-critical metrics: data move-
ment volume within the on-chip memory hierarchy, resource usage
of each level of memory and compute units, and the total num-
ber of computation operations required by the accelerator. With
these metrics, performance results including latency, energy, and
bandwidth requirements are calculated based on the architecture
specifications. We explain the tree-based analysis in Section 5. We
also design a mapper in TileFlow to explore the design space of
fusion dataflow. We introduce the mapper in Section 6.

4 TILE-CENTRIC NOTATION
4.1 3D Design Space of Fusion Dataflow
We characterize the design space of fusion dataflow as a 3D space
composed of three dimensions: compute ordering, resource bind-
ing, and loop tiling. Compute ordering is to choose the proper

Table 1: The resource binding primitives of TileFlow.

Name Abbr. Explanation Example
Intra-tile Primitives

Spatial Sp map loops to spatial units Sp(loops)
Temporal Tp map loops to temporal steps Tp(loops)

Inter-tile Primitives

Sequential Seq tiles each occupies all the Seq(𝑇1, ...,𝑇𝑀 )hardware resources in turns

Sharing Shar tiles share the hardware Shar(𝑇1, ...,𝑇𝑀 )memory and execute in turns

Parallel Para tiles spatially use different Para(𝑇1, ...,𝑇𝑀 )compute and memory units

Pipeline Pipe tiles are dependent and Pipe(𝑇1, ... ,𝑇𝑀 )execute in a pipeline manner

order of execution for all the operators in the given DNN workload.
Resource binding is to allocate compute and memory resources
for each step of computation and for each operator. Loop tiling is
about choosing loops to tile and finding optimized tiling factors
to maximize performance with respect to the hardware resource
constraints. In Figure 4 part a), we show an example DNN workload
with three operators. In part b), we visualize the 3D design space
for this workload.

First, we explain the details for the compute ordering dimension.
Each design point in this dimension is an ordering tree, indicating
the execution order of operators. Our insights in choosing tree
structure are two folds. On one hand, tree structure is suitable
for tiling because outer loops can form the root node, while inner
loops can form the children nodes. On the other hand, the tree
structure can naturally capture the insertion of one polyhedron into
another polyhedron, which corresponds to the fusion of operators.
Each node in the tree represents a tile of computation, which is a
polyhedron composed of iterations over its children nodes. When
an operator𝑂𝑝1 is fused into another operator𝑂𝑝2,𝑂𝑝1’s iteration
space (a polyhedron) is inserted into the iteration space of 𝑂𝑝2,
which is modeled as inserting a node (for 𝑂𝑝1) as the child to
another node (for 𝑂𝑝2) in the tree structure. In Figure 4 part c), we
zoom in one ordering tree choice and show its structure in detail.
This tree structure means that operator 𝐴 is fused to operator 𝐵 at
𝐿1memory, and both of them are fused to operator𝐶 at 𝐿2memory
(the color of each tile indicates which operator the tile belongs to).
The execution order is: in 𝐿1 memory, compute a tile of 𝐴 first and
then compute a tile of 𝐵; repeat the first step until the 𝐿2 tile of 𝐵
is ready; after this, use the data tile of 𝐵 from 𝐿2 to compute a tile
of𝐶 in 𝐿2 memory; finally, repeat the aforementioned steps until𝐶
is fully completed.

Besides the ordering of tiles, the loop orders within one tile
should also be carefully decided because the loop orders influence
the fusion granularity. In detail, when fusing two operators (fuse
𝑂𝑝1 into 𝑂𝑝2), only the reduction loops of 𝑂𝑝2 are allowed in the
parent tile in the result ordering tree (as shown in Figure 4 part c).
Otherwise, if the reduction loops of 𝑂𝑝1 appear in parent tile (as
outer loops), 𝑂𝑝2 can’t start execution until 𝑂𝑝1 has finished. As a
result, the fusion pipeline is inefficient.

Second, we explain the details for resource binding. Each design
point in this dimension is a choice of resource partition or sharing,
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2. Compute:

PE_A+PE_B+PE_C+PE_Q+PE_K
+PE_V < Total_PE

Figure 4: The 3D design space of fusion dataflow.

which is represented as a primitive. For the computation within one
node in an ordering tree, we use intra-tile primitives; for the compu-
tation from different nodes, we use inter-tile primitives. These two
types of primitives are summarized in Table 1. The explanation of Sp
and Tp are well discussed in polyhedron-based models [31, 38, 45].
So we mainly explain the inter-tile primitives. We use Figure 4
part d) to explain the inter-tile primitives. Seq binds each tile of
computation to the same hardware resources exclusively (without
any sharing) in different execution steps. Shar binds each tile to the
same compute resources in different execution steps but shares the
memory resources for them for different steps. Para binds each tile
to different parts of compute and memory resources in the same
time step, enabling spatial sharing of hardware. Pipe also spatially
shares hardware resources, but the tiles are executed in a pipeline
manner.

There is a complex trade-off in latency and resource usage for
these primitives. Depending on the input shapes, different prim-
itives are suitable for different tiles. Pipe can reduce latency and
improve throughput at the cost of high compute and memory re-
source usage. But for large shape tiles, Pipe may not be beneficial if
the required data cannot be staged in on-chip buffer. Para is similar
to Pipe but is only applicable to tiles without data dependency. By
contrast, Seq provides no improvement for latency, but it saves
on-chip compute and memory resources because only one tile can
be executed at a time. Shar is similar to Seq but allows more data
staged in on-chip buffer, thus increasing the data locality at the cost
of memory usage.

Third, we explain the loop tiling briefly. Loop tiling is the most
used optimization technique in mapping design and performance
tuning [20, 26, 49]. A loop tiling choice is composed of two parts:
the selection of loops to tile, and the selection of tiling factors. As
shown in Figure 4 part e), the selection of loops to tile affects the
computation granularity. Choosing more loops for tiling gives a
fine-grained dataflow while choosing fewer loops for tiling makes
a coarse-grained dataflow. The selection of tiling factors is to maxi-
mize the performancewith respect to hardware resource constraints
by balancing data load/store latency and computation latency.

4.2 Tile-centric Notation
To express the fusion dataflow design choices in the 3D space, we
propose a tile-centric notation. In the notation, a tile (𝑇𝑛) at memory
level 𝑛 is defined as

𝑇𝑛 = {𝑙𝑛1 , 𝑙𝑛2 , ...} (𝑇 1
𝑛−1,𝑇

2
𝑛−1, ...) (1)

where {𝑙𝑛1 , 𝑙
𝑛
2 , ...} is a loop nest over a list of sub-tiles (𝑇 1

𝑛−1 ,𝑇
2
𝑛−1

, ...), forming a tree structure with this recursive definition. The
notation naturally aligns with the fusion dataflow structure. For
compute ordering, different ordering trees are expressed using the
tile definition above. For resource binding, primitives can be added
to both loops (intra-tile) and tiles (inter-tile). For loop tiling, the
loops in each tile correspond to the tiling results and thus express
the tiling choices naturally.

We show how to use our tile-centric notation to express a fusion
dataflow for the example in Figure 4 part a). One possible fusion
dataflow is as follows

Tile Definition (Ordering and Tiling):

𝑙𝑒𝑣𝑒𝑙 0 :𝑇 0
0 = {𝑖0, 𝑙0, 𝑘 } (𝐴), 𝑇 1

0 = {𝑖0, 𝑙0} (𝐵), 𝑇 2
0 = {𝑖0, 𝑗0, 𝑙0} (𝐶 )

𝑙𝑒𝑣𝑒𝑙 1 :𝑇 0
1 = {𝑖1, 𝑙1} (𝑇 0

0 ,𝑇
1
0 ), 𝑇 1

1 = {𝑖1, 𝑗1, 𝑙1} (𝑇 2
0 )

𝑙𝑒𝑣𝑒𝑙 2 :𝑇 0
2 = {𝑖2, 𝑗2, 𝑙2} (𝑇 0

1 ,𝑇
1
1 )

Inter-tile (Binding): Intra-tile (Binding):

Pipe(𝑇 0
0 ,𝑇

1
0 ), Shar(𝑇 0

1 ,𝑇
1
1 ) Sp(𝑖2 ), Sp(𝑖1 ), Sp(𝑖0 )

This dataflow uses the same ordering in Figure 4 part c). For inter-
tile,𝑇 0

0 ,𝑇
1
0 form a pipeline;𝑇 0

1 ,𝑇
1
1 use Shar primitive. If the inter-tile

primitive is not specified, TileFlow uses Seq by default. For intra-tile,
loops 𝑖0, 𝑖1, 𝑖2 are mapped to spatial, while other loops are mapped
to temporal by default.

5 TREE-BASED ANALYSIS
From our tile-centric notation, we can get a tree representation of
a fusion dataflow. We call such a tree structure an analysis tree. In
this Section, we introduce the tree-based analysis of TileFlow for
data movement volume and resource usage. We also explain how
to calculate performance results using these metrics.
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5.1 Data Movement Analysis
Data movement analysis is used to calculate the amount of data
moved between different levels of on-chip memory. Different fusion
dataflows with different compute orders, resource bindings, and
tiling decisions may result in different data reuse and thus different
data movement volume. To calculate the data movement volume,
we start from a simple case: only one tile with perfectly nested
loops in the analysis tree. Then, we consider a more complex case
for the data movement between two tiles.

5.1.1 Single Tile Data Movement Analysis. A single tile node in an
analysis tree (without any children) represents a perfect loop nest
(polyhedron). There are two types of loops in the tile: spatial loops
and temporal loops. For each iteration step 𝑡 in the tile, for each
tensor 𝑍 , a slice of data is read or updated. We denote this as

𝑆𝑙𝑖𝑐𝑒𝑡𝑍 = 𝑍 [𝑏𝑡0 : 𝑒𝑡0 , 𝑏
𝑡
1 : 𝑒𝑡1 , ..., 𝑏

𝑡
𝐷−1 : 𝑒

𝑡
𝐷−1 ]

where 𝑏𝑡
𝑖
is the slice beginning address of dimension 𝑖 and 𝑒𝑡

𝑖
is the

slice ending address (exclusive) of dimension 𝑖 . For each dimension
𝑖 , although the beginning address 𝑏𝑡

𝑖
and ending address 𝑒𝑡

𝑖
vary

with different time steps 𝑡 , the extent of the slice (𝑒𝑡
𝑖
− 𝑏𝑡

𝑖
) remains

constant and is determined by the spatial loops at dimension 𝑖 . For
example, we use a batched 1D convolution in Figure 5 to explain the
data slice. For tensor 𝐴 in this example, in different execution time
steps, although different sub-matrices of𝐴 are used in computation,
all the sub-matrices have the same size of 4 × 6.

Single tile data movement happens between adjacent time steps
(as the proceeding of temporal loops), when a new slice of data is
required for the next step computation and the old slice of data is
no longer needed. Formally, for each time step 𝑡 , for tensor 𝑍 , the
data movement volume is

𝐷𝑀𝑡
𝑍 = |𝑆𝑙𝑖𝑐𝑒𝑡𝑍 − 𝑆𝑙𝑖𝑐𝑒𝑡−1𝑍 |

Note that 𝑆𝑙𝑖𝑐𝑒𝑡
𝑍
is a set of data, so 𝑆𝑙𝑖𝑐𝑒𝑡

𝑍
− 𝑆𝑙𝑖𝑐𝑒𝑡−1

𝑍
is the set

difference operation, the result of which is the set of data required by
time step 𝑡 but not available in time step 𝑡 − 1. |.| is norm operator,
calculating the number of elements in a set, so 𝐷𝑀𝑡

𝑍
is a non-

negative integer value. The total data movement volume 𝐷𝑀𝑍 is

𝐷𝑀𝑍 =
∑︁

𝑡𝑖 ∈𝐵𝑜𝑢𝑛𝑑𝑠
𝑈𝑖

where 𝑈𝑖 =

{
|𝑙𝑖 | × (𝐷𝑀𝑡𝑖

𝑍
+ ( |𝑙𝑖−1 | − 1) ×𝑈𝑖−1 ), 𝑖 > 1

𝐷𝑀
𝑡0
𝑍
, 𝑖 = 0

where 𝐵𝑜𝑢𝑛𝑑𝑠 is the set of time step boundaries 𝑡𝑖 (0 ≤ 𝑖 ≤ 𝐷𝑖𝑚,
𝐷𝑖𝑚 is the number of temporal loops) for temporal loops. A time
step boundary is the time step when a temporal loop is at its upper
bound and is going to return to its lower bound. In Figure 5, we
show the data movement volume of each tensor from time step
[0, 0] to time step [0, 1]. We use a vector to express time step for
simplicity so that we can correlate each value in the time step vector
to the temporal loops (in this example, we have two temporal loops
𝑖1, 𝑗1, so the time vector has two values). Tensor 𝐴 needs 4 × 4 new
elements for the next step computation and reuses 4 × 2 elements
from previous step, tensor 𝐵 needs 4 × 3 elements, while tensor 𝐶
is fully reused and no data movement is needed. We also show the
time step boundaries in Figure 5 (𝑡0 =[0, 0], 𝑡1 =[0, 2], and 𝑡2 =[2,

for loops(i1=0->3, j1=0->3) @temporal
for loops(i0=0->4, 

j0=0->4, k0=0->3) @spatial
C[i1*4+i0, j1*4+j0] += 
A[i1*4+i0, j1*4+j0 + k0] * B[i1*4+i0, k0]

Data footprint delta between time 
step [0,1] and time step [0,0]

A

B

C

time = [0, 0]

A

B

C

time = [0, 1]

4x6

4x2

4x3 4x3

4x4 4x4

reuse

new 
read

𝐷𝑀𝐴
[0,2]

= 0: 4,8: 14 − 0: 4,4: 10 = 4 × 4

𝐷𝑀𝐴
[2,0]

= 8: 12,0: 6 − 4: 8,8: 14 = 4 × 6

𝐷𝑀𝐴
[0,0]

= | 0: 4,0: 6 − ∅| = 4 × 6

4x4

𝐷𝑀𝐴 = 𝐷𝑀𝐴
[0,0]

+ 3 − 1 × 𝐷𝑀𝐴
[0,2]

+

3 − 1 × (𝐷𝑀𝐴
2,0

+ 3 − 1 × 𝐷𝑀𝐴
[0,2]

)

loop j1 extent

loop i1 extent

Figure 5: Single tile data movement analysis.

0]). Note that time step [0, 0] is also a boundary for compulsory
data miss. The total data movement volume for tensor 𝐴 in this
example is 168 (elements).

5.1.2 Inter-tile Data Movement Analysis. For an analysis tree with
a complex hierarchy, a tile will have children tiles. To calculate
the data movement volume for the parent tile, we use a similar
approach to that of a single tile by calculating the data slice set
difference between two adjacent time steps for all the children tiles.
In a given step 𝑡 , for each child tile, we first calculate its data slices
for all the input/output tensors, then we arrange these child tiles
in a list according to the time steps (decided by the temporal loops
of parent tile). For every two adjacent tiles, the set difference is
calculated to obtain how much data movement is required when
switching from one tile to another tile. By accumulating all the
set differences together, we will finally get the data movement of
the parent tile. We visualize this approach in Figure 6 (top part)
using a simple example, where the parent tile (Tile 0) only has two
temporal loops. We list the execution sequence of children tiles
(Tile 1 and Tile 2) according to the time steps. Set difference of data
slices is done for every two adjacent execution steps and the final
data movement volume is the summation of all the set difference
results. In implementation, there is no need to fully unroll all the
time steps. Thanks to the regularity of DNN workloads, we only
need to consider time step boundaries, which is similar to single
tile analysis.

Different inter-tile resource binding decisions may affect the data
movement volume. For Shar, Para, and Pipe, the data movement
calculation approach is the same as above. But for Seq, after the
execution of a tile, its accessed data slices will be evicted unless they
are needed by the following tile. This will increase data movement
during execution. We model this in TileFlow by clearing the data
slice of one tile for its tensors that are not used by the following
tile.

In previous analysis, the data movement happens within one
level of memory. Two tiles in the analysis tree may also reside in
different levels of memory. For such a case, we need to calculate
the data movement volume between memory levels. In Figure 6, we
show two tiles (Tile 1 in level X and Tile 2 in level Y) in the bottom
part. We can first analyze their data movement volume separately
to obtain how much data Tile 2 needs from Tile 1. According to the
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Figure 6: Inter-tile data movement analysis.

architecture design, there are two different cases. If level X memory
can’t move data to level Y memory directly (which is common in
DNN accelerators [36]), then we need to move the data through
their least common ancestor tile (Tile 0). Otherwise, we can directly
move data between Tile 1 and Tile 2 and record the data movement
volume between thememory of level X and level Y. This difference is
modeled in TileFlow and the corresponding data movement volume
is recorded to the memory levels where the movement happens.

5.2 Resource Usage
By traversing the analysis tree, we can also calculate resource usage
(memory and compute). For each tile𝑇𝑛 in the analysis tree, if it has
no more than one sub-tile (so it’s a perfect loop nest), the number of
PEs and memory footprint it uses can be calculated by polyhedron
analysis [31, 38, 45]. If there are more than two sub-tiles, for each
pair of sub-tiles𝑇 1

𝑛−1,𝑇
2
𝑛−1, the number of PE used by the parent tile

depends on the inter-tile resource binding primitive. The calculation
formula is

𝑁𝑢𝑚𝑃𝐸 (𝑇𝑛 ) =
{
𝑚𝑎𝑥 (𝑁𝑢𝑚𝑃𝐸 (𝑇 1

𝑛−1 ), 𝑁𝑢𝑚𝑃𝐸 (𝑇 2
𝑛−1 ) ), for Seq and Shar

𝑁𝑢𝑚𝑃𝐸 (𝑇 1
𝑛−1 ) + 𝑁𝑢𝑚𝑃𝐸 (𝑇 2

𝑛−1 ), otherwise

The memory footprint also depends on resource binding deci-
sions. The formula is

𝐹𝑜𝑜𝑡𝑃𝑟𝑖𝑛𝑡 (𝑇𝑛 ) =
{
𝑚𝑎𝑥 (𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 (𝑇 1

𝑛−1 ), 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 (𝑇 2
𝑛−1 ) ), for Seq

𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 (𝑇 1
𝑛−1 ) + 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 (𝑇 2

𝑛−1 ), otherwise

5.3 Performance Estimation
To calculate performance metrics (latency and energy) in TileFlow,
we need hardware architecture specifications 𝑆𝑝𝑒𝑐 . For each tile
𝑇𝑛 at level 𝑛, it has three execution phases: data loading, computa-
tion, and data storing. Data loading and storing volume is obtained
through data movement volume analysis introduced in previous
Sections and the data loading/storing latency is estimated by divid-
ing the data movement volume by the bandwidth 𝐵𝑊𝑛 (from 𝑆𝑝𝑒𝑐)
of the corresponding level of memory. The computation latency is
computed as follows

OP1 OP2 OP3

mem L1 L0 -
target OP3 OP3 -

binding Seq Pipe -

c) Encode tiling

loop 1 loop 2
T1 2 4
T2 4 2
T3 4 2
T4 8 16
T5 8 16
T6 8 16

b) Encode ordering tree and resource binding

Op3@L2

Op3@L1

Op3@L0

Op1@L1

Op1@L0 Op2@L0

Pipe

SeqT1

T2 T3

T4 T5 T6

Workload Generate
Population GA Search Analysis Tree MCTS

a) Mapper workflow

encode

Figure 7: Workflow and encoding of TileFlow mapper.

Lat𝑇𝑛 =



𝑃𝑒𝑟 𝑓 𝑒𝑐𝑡_𝑇𝑖𝑙𝑒_𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑇𝑛, 𝑆𝑝𝑒𝑐 ), if𝑇𝑛 has no sub-tiles

𝑀𝑎𝑥 {𝐷𝑀
𝑙𝑜𝑎𝑑
𝑛

𝐵𝑊𝑛
,
∑︁
𝑖

{Lat
𝑇 𝑖
𝑛−1

}, 𝐷𝑀
𝑠𝑡𝑜𝑟𝑒
𝑛

𝐵𝑊𝑛
}, Seq or Shar

𝑀𝑎𝑥 {𝐷𝑀
𝑙𝑜𝑎𝑑
𝑛

𝐵𝑊𝑛
, max

𝑖
{Lat

𝑇 𝑖
𝑛−1

}, 𝐷𝑀
𝑠𝑡𝑜𝑟𝑒
𝑛

𝐵𝑊𝑛
}, otherwise

where 𝑃𝑒𝑟 𝑓 𝑒𝑐𝑡_𝑇𝑖𝑙𝑒_𝐿𝑎𝑡𝑒𝑛𝑐𝑦 is to calculate the latency for a per-
fectly nested tile with polyhedron-based approach [31, 38, 45]. We
assume the data load, execution, and data store are fully pipelined
with double buffer. For energy estimation, we use existing energy
estimation frameworks [45, 64] by passing them the total number
of memory access operations (which are results of our data move-
ment analysis introduced in previous Sections) and computation
operations (which is an inherent property of the workloads and
can be calculated from the input workloads).

6 TILEFLOWMAPPER DESIGN
Manually finding efficient fusion dataflows is challenging consid-
ering the intractable design space. We design a simple mapper in
TileFlow to help design dataflows. The mapper uses a combination
of genetic algorithm and Monte Carlo Tree Search (MCTS) [56] in
exploration. The workflow is shown in Figure 7 part a). Other more
complicated exploration approaches [6, 20, 24, 25, 76, 80] are also
applicable to TileFlow. We leave this for future work.

The combined algorithm works as follows. We first encode dif-
ferent ordering trees and binding primitives into Tables as shown
in Figure 7 part b). Each operator corresponds to one column; the
entry mem represents which level of memory to stage interme-
diate data; target represents which operator to fuse into; binding
represents the binding primitive. In the example, 𝑂𝑃1 is fused to
𝑂𝑃3 at memory L1 and 𝑂𝑃2 is fused to 𝑂𝑃3 at memory L0, forming
an analysis tree. The genetic algorithm can generate a population
of analysis trees from a set of randomly sampled initial choices
through crossover and mutation of the encoded choices.

Second, all the generated analysis trees are passed to the MCTS
algorithm to find optimized tiling factors within hardware resource
constraints. For each step, it selects one loop and assigns it a tiling
factor within its trip counts. Then, it updates the constraints using
the known factor and pass the new constraints to the next un-
tiled loop. In Figure 7 part c), we show an example of encoding
tiling, which is a Table for two loops. Each searching node in the
Monte Carlo Tree corresponds such a tiling table, which records
the chosen tiling factors for each loop in each tile. When the MCTS
reaches a leaf node (that is, all the factors in the tiling table are
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decided), a complete fusion mapping is produced and evaluated
using TileFlow model. The results are feedbacks to MCTS to update
upper confidence bounds (UCB) for later searching.

By repeating such search steps hundreds of times, the optimized
tiling factors are returned to the genetic algorithm. Finally, the
genetic algorithm uses the best tiling factors to obtain the best
performance for each analysis tree. The top-K (K is a parameter)
analysis trees are reserved to produce the next population. The
above steps are repeated hundreds of times, and the best analysis
tree is returned as the best fusion dataflow.

7 EVALUATION
7.1 Model Validation
We first validate the model accuracy of TileFlow. We use both real
hardware design and state-of-the-art performance model for valida-
tion. For performance model, we use Timeloop [45] for comparison.
For real hardware, we implement a TPU-derived accelerator to com-
pare the predicted cycle of TileFlow with the RTL-level simulation
result of the accelerator.
Accelerator Implementation: We implement the accelerator in
Chisel to generate Verilog RTL. The accelerator has four cores. Each
core has two PE arrays: one for matrix multiplication (16 × 16) and
the other for vector computation (16 × 3). The on-chip buffer size
is 384KB per core. The DRAM bandwidth is 25.6GB/s. The word
width is 16 bits. The RTL is then synthesized using Cadence Genus
Synthesis and Innovus tool. The synthesis reports show that our
accelerator area is 7.84𝑚2 under TSMC 22nm technology, and the
frequency is 400 MHz. The accelerator supports matrix, vector, load,
and store instructions. We program test cases using the instructions
and compile them into binary. At last, we use Verilator [58] (version
4.0) to simulate the RTL and binary to get runtime performance
(cycle) in evaluation.

For comparison with Timeloop, we use a single operator work-
load because Timeloop doesn’t support multi-operators or fusion.
We use matrix multiplication and enumerate 1152 different map-
pings for it. We compare the predicted cycle results of TileFlow and
Timeloop as shown in Figure 8a. The x-axis is the reported cycle
of Timeloop, and the y-axis is the reported cycle of TileFlow. The
correlation between the results of TileFlow and Timeloop is high
(𝑅2 = 0.999). Similarly, for energy prediction, TileFlow’s accuracy
is still very high compared to Timeloop as shown in Figure 8b. The
average absolute value error is 0.1%. For comparison with real ac-
celerator, we use self-attention [10]. We program highly optimized
fusion kernels for our accelerator in assembly and enumerate 131
different mappings (by changing tiling factors and shapes). We
compare the runtime cycle of our accelerator and the results pre-
dicted by TileFlow as shown in Figure 8c. The x-axis represents
different mapping cases, and the y-axis is the relative runtime cycle
(TileFlow Cycle/Real Cycle). The yellow circles are the results of
graph-based method [72], the blue triangles are results of TileFlow.
The average error of TileFlow in absolute value is 5.4%, while the
average error of graph-based method is 48.8%. Figure 8d is the com-
parison of TileFlow’s energy results and real energy consumption.
The average error in absolute value is 6.1%. For part of the test
cases, TileFlow’s energy prediction is not accurate. This is mainly

Table 2: The shape of self-attention.

Name Model 𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠 𝑠𝑒𝑞_𝑙𝑒𝑛 ℎ𝑖𝑑𝑑𝑒𝑛

Bert-S Bert 8 512 512
Bert-B Bert 12 512 768
Bert-L Bert 16 512 1024

ViT/14-B ViT 12 256 768
ViT/14-L ViT 16 256 1024
ViT/14-H ViT 16 256 1280
ViT/16-B ViT 12 196 768
ViT/16-L ViT 16 196 1024
ViT/16-H ViT 16 196 1280

T5 T5 16 1024 1024
XLM XLM 12 1024 768

Table 3: The shape of convolution chains.

Name 𝐼𝑛_𝐶 𝐻𝑒𝑖𝑔ℎ𝑡 𝑊 𝑖𝑑𝑡ℎ 𝑂𝑢𝑡_𝐶1 𝑂𝑢𝑡_𝐶2
CC1 64 112 112 192 128
CC2 32 147 147 64 80
CC3 64 56 56 128 64
CC4 128 28 28 256 128
CC5 16 227 227 64 16

Table 4: Accelerator Specification in Evaluation.

Name # of PEs Sub- Core On-chip DRAM
Core Mem. Size BW.

Edge 32 × 32 1 4 L1: 4MB 60 GB/s

Cloud 256 × 256 16 4 L1: 20MB 384 GB/sL2: 40MB

because these cases use small tiling factors. TileFlow tends to over-
estimate data movement volume (i.e., more energy for data access)
for them because it assumes data replacement happens for every
outer iteration. But in real accelerator, small tiles may not cause data
replacement. All these experiments demonstrate the high accuracy
of TileFlow.

7.2 Performance Exploration Results
In this part, we show the performance of the TileFlow mapper. We
use the input shapes in Table 2. We implement five different fusion
dataflows for self-attention in TileFlow using our tile-centric nota-
tions: Layerwise, Uni-pipe, FLAT-HGran, FLAT-RGran, and Chimera
as shown in Table 5. For accelerator configuration, we use the Edge
specification in Table 4. The Edge accelerator has four cores, each
has 4MB L1 buffer. The L1 bandwidth is 1.2TB/s. To support the
non-linear softmax layer in self-attention, we need to expand it into
five small operators ( max, sub, exp, sum, div). Each small operator
is then converted to nested loops so that they can be handled by
TileFlow.

Our experiment machine is Intel(R) Xeon(R) Gold 6348 CPU @
2.60GHz. We use a single thread in execution. We set the mapper to
explore 50 rounds; each round samples 200 tiling choices and needs
about 12 seconds for evaluation. In Figure 9 part a), we plot the
normalized performance change as exploration proceeds. We use
the Bert-S input shape in Table 2. The results show that the TileFlow
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Figure 8: Validation Results of TileFlow.
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Figure 9: Performance of TileFlow Mapper

Table 5: Different dataflows in evaluation.

Name Explanation
Self-attention Dataflows

Layerwise No fusion. Map one Op to hardware at a time.

Uni-pipe Pipeline𝑄 × 𝐾 and softmax
without tiling multi_heads/row.

FLAT- Fuse𝑄 × 𝐾 and softmax and tile
HGran [26] batch and multi_heads dimension.

FLAT- Fuse𝑄 × 𝐾 and softmax and tile
RGran [26] batch, multi_heads, and row dimension.
Chimera [79] Fuse𝑄 × 𝐾 and softmax and tile all the dimensions.

Convolution Chain Dataflow
Layerwise No fusion. Map one convolution to hardware at at time.
Fused- Fuse two convolutions with

Layer [2] height and width dimensions tiled.
ISOS [70] Fuse two convolutions with only width tiled.

mapper needs around 3.2 minutes to 6.4 minutes to converge. We
then show the exploration results in the full 3D space (compute
ordering, resource binding, and loop tiling). Besides self-attention
layers, we also use convolution chains in evaluation. The input
shapes of the convolution chains are shown in Table 3. The 3D
space size is much larger than tiling space. For the workloads we
use, the number of different datafows ranges from 5103 to 20412,
each dataflow design further has its own tiling factor space. We
plot the exploration traces in Figure 9 part b) and part c). The x-axis
represents search rounds. TileFlow requires a few rounds (less than
50 rounds, each round samples 20 fusion dataflows) to converge.

To fully explore the 3D space requires a long time (1-2 days), we
use multiprocessing to accelerate the exploration (56 processes) and
the exploration time is reduced within one hour. The exploration
results show that different input shapes prefer different dataflows.
It’s hard to choose one dataflow that achieves the best performance
for all the input shapes. As a result, we choose one dataflow that
gives the geometric optimal performance over all input shapes
as a representative of TileFlow (referred to as TileFlow dataflow).
For self-attention, the TileFlow dataflow is to pipeline all the three
computation stages: 𝑄 × 𝐾 , softmax, and 𝐿 ×𝑉 (symbols used in
Figure 1) with all the loops tiled. The speedup of this dataflow to
Layerwise self-attention dataflow is 6.65×. Compared to the best self-
attention dataflow (FLAT-RGran) in Table 5, the average speedup is
1.85×. For convolution chains, the TileFlow dataflow is to pipeline
the two convolutions with their channel dimensions tiled. The
speedup of this dataflow to Layerwise is 1.31×. The speedup to
Fused-Layer is 1.28×.

7.3 Fusion Dataflow Comparison
In this part, we compare the state-of-the-art fusion dataflows [2, 26,
70, 79] with the dataflows of TileFlow (described in Section 7.2) for
latency and memory access. We use two accelerator specifications:
Edge and Cloud, as listed in Table 4. The Cloud specification has
four cores. Each core further has 16 sub-cores and one 40MB L2
buffer. The L1 bandwidth is 9.6TB/s, the L2 bandwidth is 1.9TB/s.
To ensure a fair comparison among different dataflows, we utilize
TileFlow’s mapper to determine the tiling factors for all the different
dataflows.
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Figure 10: Fusion dataflow evaluation for self-attention on Edge accelerator (DM is data movement volume).
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Figure 11: Fusion dataflow evaluation for self-attention on Cloud accelerator (DM is data movement volume).

First, we show the evaluation results on Edge accelerator in Fig-
ure 10. In part a), we show the normalized cycle of all the dataflows
for all the self-attention input shapes. Overall, compared to Lay-
erwise, Uni-pipe dataflow achieves 1.62× speedup, FLAT-HGran
dataflow achieves 3.59× speedup, FLAT-RGran dataflow achieves
2.89× speedup, and Chimera dataflow achieves 2.91× speedup. Tile-
Flow achieves the best performance compared to all the other
dataflows: 6.65× speedup to Layerwise; 4.11× speedup to Uni-Pipe;
1.85× speedup to FLAT-HGran; 2.30× speedup to FLAT-RGran; 2.28×
speedup to Chimera. To analyze the source of speedup, we also show
the data movement volume (DM) results of DRAM and on-chip
memory in part b) and part c) in Figure 10. On average, compared
to Layerwise dataflow, Uni-pipe and FLAT-HGran dataflows can re-
duce 90.4% DRAM access, FLAT-RGran dataflow can reduce 81.5%
DRAM access, Chimera dataflow can reduce 75.1% DRAM access,
TileFlow dataflow can reduce 87.1% DRAM access. The reduction of
DRAM access implies a higher data reuse in on-chip memory. Al-
though FLAT-HGran has less DRAM data movement than TileFlow
for some of the input configurations, its PE utilization is not high

(about 50% of TileFlow). So its performance is lower. We plot the
on-chip memory (L1 for Edge) data movement volume in part c).
For the best cases of all the dataflows, L1 data movement volume
is increased by 2.01 × −6.45× for the 11 input shapes. For a spe-
cific input shape (Bert-B), we show the detailed L1 data movement
breakdown in Figure 10 part d). The update refers to the write back
to L1 buffer, fill refers to the initial data load from DRAM to L1
buffer, read refers to the data load from L1 buffer to register. On
average, 80.9% of the L1 data movement is read, 14.7% is update.

Comparing all the dataflows, for Edge accelerator, Uni-pipe is
better than Layerwise dataflow because the fusion eliminates a
large number of DRAM access; FLAT-HGran dataflow is better than
Uni-pipe dataflow because of tiling, the tiled blocks are spatially
mapped to different cores and increase parallelism; FLAT-RGran and
Chimera dataflows produce similar performance to FLAT-HGran,
but their L1 buffer footprint is smaller, FLAT-RGran only requires
28.4% of the L1 buffer size that FLAT-HGran uses for computation,
while Chimera only requires 14.8%.
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Figure 12: Fusion dataflow evaluation for 3 × 3 convolution
chain on Cloud Accelerator.

Then, we show the evaluation results on Cloud accelerator in
Figure 11. In part a), we show the normalized runtime cycle results.
Compared to Layerwise dataflow, the speedup of Uni-pipe dataflow
is 1.37×, the speedups of all the other dataflows are the same: 12.63×.
The speedup of Uni-pipe is low due to low spatial utilization. Uni-
pipe only uses around 25% of the spatial cores for computation for
lack of tiling, while other dataflows can fully utilize all the spatial
cores with tiling. FLAT-HGran, FLAT-RGran, Chimera can achieve
the same best performance. This implies that for Cloud accelerator
(both compute and bandwidth resources are abundant), the tiling
granularity has little affect on performance. TileFlow’s mapper is
always able to find the optimized tiling factors to maximize the
performance for different tiling granularity.

We also show the on-chip memory data movement volume (DM)
in Figure 11 part b) and part c). All the fusion dataflows have the
same amount of DRAM access reduction ratio (geometric mean
is 86.6% reduction) compared to Layerwise dataflow. So we focus
on on-chip memory data movement. In part b), we show the L2
buffer data movement volume. All the dataflows except Uni-pipe
have larger amount of data movement volume, showing a higher
data reuse ratio in on-chip memory. Uni-pipe has low L2 data move-
ment because its data is largely staged in L1 buffer. For L1 buffer
data movement volume, we show the statistics for one sub-core
in Figure 11 part c). For fusion dataflows, although there is no L1
data movement increase for single sub-core compared to Layerwise
dataflow (about 52.1%− 108.5% that of Layerwise), the total amount
of L1 data movement for all the sub-cores has increased significantly
(by 7.01 × −33.27×). We show the sub-core spatial utilization ratio
in Figure 11 part d). Compared to Layerwise, the utilization ratio
of FLAT-HGran is improved by 13.46×; FLAT-RGran improves the
utilization ratio by 28.34×; Chimera improves the ratio by 32.02×;
TileFlow improves it by 34.58×.

Besides self-attention, we also show the dataflow evaluation re-
sults for convolution chains using the input shapes in Table 3 on
Cloud accelerator. These input shapes are from real networks [19,
50, 59] and follow the setting used in Chimera [79]. The two convo-
lutions in the convolution chain uses 3×3 filter size. The normalized
runtime cycle and DRAM access are shown in Figure 12. The geo-
metric mean speedup of Fused-Layer dataflow to Layerwise is 1.01×.
Although Fused-Layer dataflow brings little latency improvement, it
reduces DRAM access by 73.0% and reduces energy consumption by
30.1%. ISOS fails to provide speedup. ISOS is originally designed for
sparse CNN. But we use it for dense CNN in experiments. TileFlow
achieves 1.59× speedup to Layerwise and Fused-Layer.
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Figure 13: Energy breakdown for FLAT-RGran dataflows on
Edge accelerator for Bert-S.
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Figure 14: Slow-down of L1 on Edge accelerator under differ-
ent bandwidth configurations for convolution chains.

7.4 Energy Breakdown
We show the energy and bandwidth evaluation results of TileFlow.
First, we evaluate all the fusion dataflows for self-attention on
the Edge accelerator. On average, compared to Layerwise, Uni-pipe
can save 15.4% energy, FLAT-HGran can save 16.3% energy, FLAT-
RGran can save 8.7% energy, Chimera can save 9.1% energy, and
TileFlow dataflow (described in Section 7.2) can save 13.3% energy.
To analyze the energy breakdown, we evaluate FLAT-RGran for
Bert-S on Edge accelerator with different L1 buffer sizes as shown
in Figure 13. L1 energy consumption accounts for most of the total
energy consumption. The SRAM buffer size dictates the read/write
energy of L1 buffer. We use two different buffer sizes for L1: 200KB
and 1MB. For small L1 buffer, on average, 46.5% energy is used for
L1 access, 33.3% energy is used for DRAM access, 16.5% energy
is used for register access. For large L1 buffer, on average, 80.1%
energy is used for L1 access, 12.3% energy is used for DRAM access,
6.1% energy is used for register access.

7.5 Sensitivity Study
Bandwidth:We first study TileFlow’s sensitivity to bandwidth. To
do this, we choose Edge accelerator and enumerate L1 bandwidth
from 1GB/s to 1200GB/s by step 1GB/s. The metric we use for
bandwidth is slow-down [45]:

Slow-down =𝑚𝑎𝑥 { L1 access latency
L1 compute latency

, 1}

If the slow-down of L1 is larger than 1, it indicates that L1 ac-
cess dominates the runtime performance and the workload become
memory-bound. So the suitable L1 bandwidth is the minimal value
that makes L1 slow-down as 1. In Figure 14, we show the trace for
two layers: CC1 and CC2. The results show that Fused-Layer and
ISOS are similar in bandwidth requirements. The suitable bandwidth
for them is 96GB/s. TileFlow dataflow (described in Section 7.2) is
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Table 6: Performance (106 cycles) of TileFlow for different
PE array sizes.

PE Size 82 162 322 642 1282 2562

baseline 12.58 3.15 2.36 1.73 1.57 1.57
TileFlow 6.29 1.57 1.57 1.57 1.57 1.57

Table 7: Evaluation of different FLAT dataflows for T5 (batch
128) on Cloud accelerator with/without tiling exploration.

Part a) No Tiling Exploration. No Memory Limit.
Dataflow MGran BGran HGran RGran TileFlow
Cycle (106) 335.54 151.00 67.11 18.87 16.78

L1 Used (MB) 131.14 4.10 0.26 0.17 0.01
L2 Used (MB) 262.14 16.38 4.10 2.18 0.19

Part b) With Exploration for Tiling. No Memory Limit.
Dataflow MGran BGran HGran RGran TileFlow
Cycle (106) 335.54 8.39 8.39 8.39 7.67

L1 Used (MB) 131.14 65.57 8.20 2.11 0.16
L2 Used (MB) 262.14 131.07 131.07 196.61 131.07

Part c) With Exploration for Tiling. With Memory Limit.
Dataflow MGran BGran HGran RGran TileFlow
Cycle (106) OOM OOM 14.68 14.68 16.78

L1 Used (MB) - - 4.10 0.53 0.05
L2 Used (MB) - - 32.77 12.29 20.48

more sensitive to both L1 bandwidth and layer input shape. The suit-
able L1 bandwidth for CC1 is 1080 GB/s, and the suitable bandwidth
for CC2 is 720 GB/s.

PE Size: Second, we evaluate TileFlow’s dataflow using different
PE array sizes from 8×8 to 256×256with step 2 for each dimension.
The workload is self-attention (the shape is Bert-Base). We show
the results in Table 6. The baseline is FLAT-RGran. The results show
that TileFlow can adapt to different PE array sizes and converge to
a stable optimal performance when PE size is larger than 16 × 16.
The speedup to baseline is also stable for small PE sizes (around
2×).

Tiling: Third, we evaluate the sensitivity of TileFlow to tiling
granularity and tile factors. FLAT proposes four different tiling
granularities: MGran (no tiling), BGran (tiling batch), HGran (tiling
batch and multi_heads), and RGran (tiling batch, multi_heads, and
rows). In this part, we set batch size to 128 and compare the perfor-
mance of the four granularities of FLAT.We also analyze the effect of
tiling factor exploration in this part. The workload is self-attention
with T5 configuration. We use Cloud accelerator for evaluation.

The results are shown in Table 7.Whenwe use fixed tiling factors
for the dataflows without exploration for tiling (Table 7 part a), we
find that the finer the tiling granularity, the better the performance
and the less the on-chip memory required for execution. For a fair
comparison, the tiling factors for batch dimension are the same
for FLAT-BGran, FLAT-HGran, FLAT-RGran, and TileFlow; the tiling
factors for multi_heads are the same for FLAT-HGran, FLAT-RGran,
and TileFlow; the tiling factors for row dimension are the same for
FLAT-RGran and TileFlow. The fixed factors are not efficient because
of the low on-chip memory utilization and spatial utilization.

When exploring tiling factors for all the dataflows, we evaluate
two different scenarios. The first is to ignore the on-chip buffer

capacity limit (unlimited on-chip memory resources). TileFlow’s
mapper first find the optimal tiling factors for all the dataflows.
Then, Using the optimal factors, we infer the amount of on-chip
memory resources required by each dataflow. The results (Table
7 part b) show that without memory limit, FLAT-BGran, FLAT-
HGran, and FLAT-RGran can achieve the same performance. These
dataflows require less L1 memory than the Cloud accelerator has
provided (20 MB), while requiring from 3.3× to 4.9× more L2 mem-
ory than provided (40 MB). The second scenario is to take memory
capacity constraints into consideration. The results (Table 7 part c)
show that FLAT-MGran and FLAT-BGran both exceed memory limit.
FLAT-HGran and FLAT-RGran still achieve the same performance.
But they require different amount of on-chip memory. For example,
the L2 memory consumption of FLAT-RGran is only 37.5% that of
FLAT-HGran. For both scenarios, tiling exploration consistently
achieves better performance than fixed tiling factors.

Compared to FLAT, TileFlow achieves similar or better per-
formance at a lower cost of on-chip memory. The reason is that
TileFlow tiles all the dimensions of all the three operators in self-
attention (𝑆 = 𝑄 × 𝐾 , 𝐿 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆), 𝐴 = 𝑉 × 𝐿) thanks to the
expressiveness of the tile-centric notation and the comprehensive
exploration of full 3D design space (Section 4). Specially, for part c)
in Table 7, tensors 𝑄 , 𝐾 , 𝐿, 𝑉 , and 𝐴 all contribute to the L1 usage.
TileFlow can tile both the row dimension and column dimension of
𝑆 , 𝐿, and 𝐴. Tiling column dimensions will influence the L1 tile size
of tensors 𝐾 , 𝐿, and 𝐴. This tiling strategy is not explored by FLAT
because FLAT does not tile column dimension of 𝑆 , 𝐿, and 𝐴. FLAT
requires at least one full row of intermediate data or output data
to be staged in on-chip buffer. Each row of 𝐾 and 𝐿 (the length is
1024) has to be placed in L1 buffer, while TileFlow tiles the column
dimension and decides the tiling factor by exploring the tiling space.
In this case, the searched tiling factor for column dimension is 64,
so only a sub-row of size 64 will be placed in L1 buffer. As a result,
TileFlow can reduce the L1 usage, leading to an order of magnitude
lower L1 usage.

In summary, finer tiling granularity is suitable for memory-
limited scenarios. Different granularities can achieve similar perfor-
mance when on-chip memory resource is abundant. Tiling explo-
ration can always improve performance compared to fixed tiling
factors.

7.6 Evaluation on GPU
TileFlow’s dataflow can be integrated into machine learning frame-
works such as PyTorch [46], TensorFlow [1], and TVM [5]. We
use TVM as an exmpale. We use TVM’s code generator to gener-
ate CUDA kernels on A100 GPU for TileFlow dataflow. We also
implement FLAT-RGran dataflow using TVM as our baseline. For
workloads, we use the self-attention layers from T5-Large [48] and
XLM [8] with large input shapes (with seq_len from 1k to 256k). The
results are listed in Table 8. TileFlow achieves better performance
because of better tiling of intermediate softmax operator. FLAT
doesn’t tile the rows of softmax, so for 256k seq_len, its results are
out of (shared) memory. TileFlow dataflow can support all the input
shapes without any problem thanks to the proper tiling of softmax
operator.
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Table 8: Evaluate TileFlow’ runtime (ms) on A100 GPU for
self-attention layers of T5 and XLM with different seq_len.

Model seq_len 1k 4k 16k 64k 256k

T5 baseline 1.13 16.58 156.99 1064.63 OOM
TileFlow 0.23 3.10 47.75 756.99 12204.08

XLM baseline 0.89 12.55 117.89 798.69 OOM
TileFlow 0.23 2.45 35.96 567.69 9159.60

7.7 Discussion
TileFlow is mainly designed for dense workloads. Prior works
such as GCNAX [33], OMEGA [14], Gamma [71], Spada [35], and
Flexagon [43] support sparse workloads through customized PE ar-
rays or caches. SparseLoop [66] proposes to use sparse acceleration
features to model sparse architectures and workloads. This is also
applicable to TileFlow, which is left for future work.

8 RELATEDWORK
DNN Accelerators and Mappers: Various accelerators have been
proposed [7, 12, 15, 18, 23, 29, 33, 36, 39, 41, 47] in recent years.
These accelerators employ different dataflows for DNN accelera-
tion. To exploit the high performance and energy-efficiency of these
accelerators, different hardware mappers [20, 21, 24, 62, 74, 78, 81]
have been proposed. For example, ConfuciuX [24] uses reinforce-
ment learning to help search optimized hardware resource assign-
ments and datflow styles. CoSA [21] proposes to use mixed in-
teger programming to optimize mapping for spatial architecture.
SARA [74] can compile general programs to reconfigurable dataflow
accelerator with high parallelism and efficiency. The exploration
methods in these works are orthogonal to TileFlow and can be
implemented in TileFlow mapper.

Performance Models: Performance models [31, 38, 45, 54, 65,
66, 68] are important to both dataflow exploration and architecture
design. Timeloop [45] uses spatial/temporal notations to describe
mappings and can analyze latency, energy, and reuse for different
customized architectures. MAESTRO [31] uses data-centric nota-
tions for dataflow description and calculates performance metrics
through iteration analysis. Scale-SIM [54] provides systematic per-
formance modeling for systolic array architecture. Interstellar [69]
proposes to use Halide [49] schedule primitives to design DNN
accelerators. TENET [38] proposes a relation-centric notation and
uses polyhedral approaches for latency estimation. Sparseloop [66]
provides a performance model for sparse workloads by modeling
the sparsity and format for computation tiles. These models focus
on single operator acceleration and mainly use polyhedron-based
approach to infer data movement volume and reuse. For multi-
operators, performance models are more necessary because of the
complicated inter-operator data movement and deep accelerator
memory hierarchy. MAGMA [25], NNest [28], Dnn-chip Predic-
tor [75], HDA [32], HASCO [67], and H2H [72] analyze the whole
DNN performance by separately evaluating each layer using single-
operator performance models and then assemble the results to
predict the performance of the whole DNN. They lack a detailed
analysis of inter-operator on-chip data movement. Moreover, on-
chip resource constraints are not considered for operator fusion
optimizations.

Fusion Optimizations and Dataflows: As the bandwidth re-
source becomes critical in DNN performance, more and more fusion
strategies are proposed. Software fusion techniques [5, 6, 9, 22, 34,
40, 44, 49, 76, 77, 79, 80, 82] use different compilers and schedulers
to fuse multiple operators into one kernel and leverage the hard-
ware on-chip memory to exploit locality. Among them, Halide [49],
TVM [5], FlexTensor [80], Ansor [76], Chimera [79] use schedule-
based fusion techniques. They use manually designed templates,
machine-learning cost models, or analytical models to guide fusion
strategy exploration. But they don’t provide hardware performance
models. Hardware fusion techniques [2, 13, 26, 42, 63, 70] design
fusion dataflows to map the fused layers to hardware accelerators.
Fused-layer [2] proposes to fuse CNN layers together with height
and width dimensions tiled. ISOSceles [70] proposes to fuse sparse
CNN layers with only width dimension tiled. FLAT [26] proposes
four different dataflows to fuse self-attention layer with softmax
rows stationary in on-chip buffer. TileFlow can express these fusion
dataflows and provide a fair comparison among them in terms of
latency and energy.

9 CONCLUSION
Fusion is an importation optimization in DNN dataflow design.
Previous performance models focus on single operator acceleration
without consideration for fusion. We propose a framework Tile-
Flow that models dataflows for operator fusion using tile-centric
notations and a tree-based approach to analyze data movement vol-
ume and accelerator resource usage. TileFlow can estimate latency
and energy consumption for different dataflows and architecture
specifications. In evaluation, TileFlow’s dataflow achieves 1.85×
runtime speedup compared to state-of-the-art work on average for
self-attention and 1.28× speedup for convolution chains.
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A ARTIFACT APPENDIX
A.1 Abstract
In this section, we provide detailed information that will facilitate
the artifact evaluation process of TileFlow. TileFlow facilitates the
analysis, design, and evaluation of complex dataflow architectures,
making it a useful tool for researchers and engineers in the field
of machine learning and hardware design. For Artifact Evaluation,
we provide convenient scripts to reproduce the key experiments in
the paper, as well as a tutorial on using TileFlow. In the following,
we summarize the requirements and instructions to reproduce the
experiments and play with TileFlow.

A.2 Artifact check-list (meta-information)
• Algorithm: TileFlow is a simulation framework to automate the

analysis and design of fusion dataflow. The neural network and hard-
ware are first described by users in TileFlow’s tile-centric notation.
Based on the notation, TileFlow characterizes the 3D design space
of potential dataflow designs and evaluates each design point by the
tree-based analysis. On top of that, TileFlow is able to search for
high quality dataflow designs by exploring the design space using a
combination of generative and Mont Caro Tree Search (MCTS).

• Program: Python (>= 3.8) and C++
• Compilation: Software construction tool ‘scons‘ (v3.1.2) is used

for validation experiment and the tutorials. ‘cmake‘ (>= 3.12) is used
for the dataflow comparison experiment.

• Transformations: No.
• Binary: No.
• Model: No.
• Data set: No.
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• Run-time environment: Ubuntu 20.04.5 Linux system.
• Hardware: No.
• Run-time state: No.
• Execution: No.
• Metrics: Cycle.
• Output: The resulting figures shown in paper for key experiments.
• Experiments: One experiment for the validation of TileFlow’s

accuracy, and the other experiment for the comparison of different
dataflows.

• How much disk space required (approximately)?: More than
4GB.

• How much time is needed to prepare workflow (approxi-
mately)?: Less than an hour.

• How much time is needed to complete experiments (approxi-
mately)?: The validation experiment completes in minutes. The
dataflow comparison experiments take 1-2 hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT.
• Data licenses (if publicly available)?: No data.
• Workflow framework used?: No.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.8350955

A.3 Description
We provide two software repositories for evaluation. The first is
TileFlow main repository, and the second is Domino compiler. The
main part of the method proposed in this paper is implemented
in TileFlow repository. We develop Domino to provide a Python
interface for TileFlow so that we can do experiments easily. It is not
a critical part of TileFlow because TileFlow also has a programming
interface using configuration files (.yaml format).

A.3.1 How to access. For the validation experiment and tutorials,
please access the framework from

https://github.com/pku-liang/TileFlow.
For the dataflow comparison experiment, please access the source

code from
https://github.com/KnowingNothing/Domino.

A.3.2 Hardware dependencies. The experiments only use CPU for
simulation/modeling.

A.3.3 Software dependencies. The scripts need to run on linux
systems and works best with sudo access. Make sure to install
Python ≥ 3.8, scons ≥ v3.1.2, cmake ≥ 3.12.

A.3.4 Data sets. No data sets required.

A.3.5 Models. No models required.

A.4 Installation
Please follow the README file in each repository to install the
software. We also list the brief instructions here. For a neat envi-
ronment, please use a virtual environment for Python (e.g., conda
or virtualenv).
Install dependencies (needs sudo).
$ sudo apt install scons libconfig++-dev

libboost -dev libboost -iostreams -dev

libboost -serialization -dev

libyaml -cpp -dev libncurses -dev

libtinfo -dev libgpm -dev

git build -essential python3 -pip

Download TileFlow and Domino.

$ cd ~

$ git clone --recursive \

https :// github.com/pku -liang/TileFlow.git

$ git clone --recursive \

https :// github.com/KnowingNothing/Domino.git

Build TileFlow.

$ cd ~/ TileFlow

$ export TILEFLOW_BASE=$(pwd)

# build timeloop

$ cd 3rdparty/timeloop/src

$ ln -s ../pat -public/src/pat .

$ cd ..

$ scons -j4 --static

# build tileflow

cd ../..

scons -j4 --static

# required each time before using TileFlow

source ./setup -env.sh

Build Domino.

$ cd ~/ Domino

$ mkdir build && cd build

$ cmake .. && make

$ cd ..

$ pip install -r requirements.txt

# required each time before using Domino

source ./set -env.sh

# use the Python interface for TileFlow

cd testing/tileflow

source ./set -env.sh

A.5 Experiment workflow
• Experiment setup. Download TileFlow and Domino and
compile them according to the instructions in their README
file (or see the instructions above).

• The validation experiment. This experiment validates
TileFlow’s accuracy with current simulator and a real hard-
ware accelerator. Follow the instructions in
https://github.com/pku-liang/TileFlow/tree/master/AE/validation/
timeloop
and
https://github.com/pku-liang/TileFlow/tree/master/AE/validation/
accelerator
of TileFlow’s repository to reproduce experiment in Figure
7.

• The dataflow comparison experiment. This experiment
compares different dataflow designs for the self-attention
block and convolution neural networks on different hard-
ware accelerator configurations. Please follow the instruc-
tions in
https://github.com/KnowingNothing/Domino/tree/master/testing/
tileflow/test/experiments/
to reproduce the experiments in Figure 9/10.

• Tutorials on using TileFlow. In order to help users quickly
get started with designing dataflows using TileFlow, we pro-
vide some tutorials. Please refer to the tutorials folder for
instructions.
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A.6 Evaluation and expected results
If run successfully, you will be able to see the experimental results
in Figures 8, 10, and 11. The experimental results should generally
be consistent with the results presented in the paper, but due to

the randomness of the search process, some deviations might occur.
Also, The image format in the experimental results would be slightly
different from the format in the paper.
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