
Rubick: A Unified Infrastructure for Analyzing,
Exploring, and Implementing Spatial Architectures

via Dataflow Decomposition
Liqiang Lu, Zizhang Luo, Size Zheng, Jieming Yin Member IEEE,

Jason Cong Fellow IEEE, Yun Liang Senior Member IEEE, Jianwei Yin Member IEEE

Abstract—The fast-growing tensor applications expose tremen-
dous dataflow alternatives when implemented on spatial ar-
chitectures that feature large PE arrays and abundant inter-
connection resources. Prior works develop various notations
and performance models for dataflows. Though these notations
are very useful for understanding the reuse, bandwidth, and
performance of dataflows, they do not define the underlying
hardware implementation. Due to the semantic gap, analysis
based on these notations cannot capture the detailed architectural
features between different dataflows, leading to inefficient design
space exploration and suboptimal designs.

To address these issues, we propose Rubick, a unified in-
frastructure for analyzing, exploring, and implementing spatial
architectures. The main innovation of Rubick is it decomposes the
dataflow into two low-level intermediate representations: access
entry and data layout. Access entry specifies how data enter
into the PE arrays from memory, while data layout specifies
how data are arranged and accessed. These two representations
allow us to infer the hardware implementation details such as
PE interconnection and memory structure, which are amenable
for structural analysis and systematic exploration. Based on this
decomposition analysis, Rubick provides opportunities for micro-
architecture optimization and efficient design space exploration.
Our experiments demonstrate that Rubick can reduce 82.4% of
wire resources with only a 2.7% latency increase by optimizing
access entry IR, and achieve 70.8% memory overhead reduction
by optimizing data layout IR. Rubick also accelerates the DSE
time of dataflows by up to 1.1 × 105X, saving the time from
several days to minutes. The source code of Rubick is publically
available on (https://link-omitted-for-blind-review).

I. INTRODUCTION

Spatial architectures play a pivotal role in the acceleration
of various tensor applications [6]–[9], [13], [16], [17], [21],
[23], [31], [37], [45], [51], [53]–[56], [64], [66], [73]. A
typical spatial architecture features a processing element (PE)
array with a scratchpad memory, which exhibits high compute
parallelism and energy efficiency. Besides, there are abundant
interconnection resources that connect PEs to support different

Liqiang Lu and Jianwei Yin are with College of Computer Science,
Zhejiang University, Hangzhou, Zhejiang, 310058 China. Zizhang Luo, Size
Zheng, Yun Liang are with Center for Energy-efficient Computing and Appli-
cations, Peking University, Beijing, 100871 China. Jieming Yin is with School
of Computer Science, Nanjing University of Posts and Telecommunications,
Nanjing, Jiangsu, 210003 China. Jason Cong is with Computer Science
Department, University of California at Los Angeles, CA, 90095 U.S.. Jianwei
Yin and Yun Liang are the corresponding authors. Liqiang Lu and Zizhang
Luo contributed equally.
E-mail: {liqianglu,zjuyjw}@zju.edu.cn,
{semiwaker,zhengsz,ericlyun}@pku.edu.cn,
jieming.yin@njupt.edu.cn, cong@cs.ucla.edu.

datapaths and enable efficient data reuse. Spatial architecture
is a natural fit for tensor applications, whose computation
and memory access are highly regular but demand high
performance [1], [2], [14], [27], [42], [59], [62], [67].

Hardware dataflow is the key component when implement-
ing applications onto spatial architectures, which assigns the
instance in the loop iteration domain to a spacetime-stamp
in the dataflow spacetime domain. Specifically, the space-
stamp gives the PE location to execute an instance, while
the time-stamp determines the execution sequence. Therefore,
the dataflow implies 1) how data enter the specific PEs from
the scratchpad SRAM and traverse across PE array, 2) how
data are arranged in the on-chip memory and scheduled during
computation. For example, Google’s Tensor Processing Unit
(TPU) applies systolic dataflow to accelerate general-purpose
matrix multiplication (GEMM). This dataflow determines that
only boundary PEs will read data, and data traverse between
adjacent PEs. Besides, the data layouts are skewed when
accessed from the scratchpad to PEs. While Cambricon [38]
and MAERI [31] feature reduction tree dataflow, which indi-
cates that data are broadcast to PEs in rectangle data layout.
Other spatial architectures that enable reconfigurability like
DySER [17] and Plasticine [54], integrate PEs and their
interconnection in a flexible manner and hence support a wider
range of dataflows.

Recently, several frameworks have been proposed for
dataflow analysis and performance modeling [5], [8], [18],
[20], [25], [29], [30], [39], [40], [43], [49], [50], [70]–
[72]. Among them, MAESTRO [29], Interstellar [71], and
TENET [39] are three state-of-the-art dataflow modeling
frameworks. MAESTRO [29] proposes a data-centric nota-
tion that represents the dataflow according to the data index
allocation. Interstellar [71] uses loop-nest with primitives to
describe the dataflow, known as the compute-centric notation.
TENET [39] proposes a relation-centric notation that models
dataflows as mappings from computational instances to PEs
and cycles. Despite that all these frameworks are capable of
precisely modeling the dataflow and estimating performance
metrics like reuse and latency, there is still a semantic gap
between these dataflow notations and architecture implemen-
tation. These existing frameworks model the behaviors of
loop instances that intertwine multiple tensors, and model the
spatial architecture in its entirety. However, different tensors
might have distinct characteristics and behavior (e.g., dimen-
sion, size, movement, etc.). It is hard to infer the behavior

1

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of each tensor from the high-level notation, including data
access patterns and data arrangements. On the other hand,
the spatial architecture consists of PEs and memory, which
serve distinct purposes in program execution. The architecture
implementation of computation and memory requires different
low-level architectural features.

Another limitation of prior frameworks is inefficient design
space exploration. The design space formed by alternating
the parameters at high level is explosively large, which takes
extremely long to explore. Furthermore, we observe that some
dataflows generated by prior frameworks are inferior due
to low resource utilization and redundant computation. In
addition, the structural similarity between different dataflows
cannot be recognized at high level. For example, TPU [23] and
OuterSpace [48] are two distinguished GEMM dataflows that
exhibit different parallelism. However, they share the same
data movement of one input matrix, which actually can be
inferred from low-level representations. As a result, the design
space exploration at high level cannot be used for hardware
optimization when architectural constraints are specified.

In this paper, we propose Rubick, a unified infrastructure
for analyzing, exploring, and implementing spatial dataflow.
To analyze the dataflow, we first decompose the dataflow
as a Cartesian product of different tensor movements. Then,
each tensor movement is further decomposed into a chain
product of two low-level IRs: access entry and data layout
to describe the hardware characteristics of computation and
memory, respectively, which can be beneficial to abstract
some hardware details. To be more concrete, the access entry
explicitly provides PE interconnection and memory interface,
describing both the location and timing of data transfers from
memory to PE. The data layout describes which element is
used for a specific access entry and thus explicitly specifies
the tensor data arrangement in the memory bank of the on-chip
buffers, and its access sequence as address generators. With
these two low-level IRs, Rubick can expose rich architectural
details.

To explore the dataflow, we form the design space of
dataflows in a structured way. We first form the sub-space
of access entry and data layout separately, then compose them
together. By doing this, we can easily capture the similarity
among the dataflows within each subspace, thus dramatically
reducing the total space by pruning out hardware inefficient
designs. More clearly, the access entry space is formed as a
linear space that consists of multiple linear combinations of
access direction vectors. The data layout space enumerates all
the possible linear transformation that maps the tensor to a
spacetime-stamp.

To implement the dataflow, we present the relationship
between Rubick IRs and the implementation details. To be
specific, we demonstrate how the access entry IR determines
the PE micro-architecture, e.g., fan-in/fan-out, pipeline latency,
and reduction scheme. The memory hierarchy is implemented
as multi-dimensional times-stamps of data layout IR, including
off-chip memory, on-chip memory and address generator.
Finally, we develop a generation tool that can automatically
implement the hardware using IR Chisel template.

A preliminary version of this paper will appear in DAC

2023 [41], we proposed to synthesize various dataflow through
dataflow decomposition. In this article, we extend previous
work with analytical techniques to further demonstrate the
benefit of Rubick IRs. To be specific, we present the intuition
of why there requires a decomposition theory, and provide
further architecture implementations including hardware op-
timizations and hardware generation. Finally, we apply our
decomposition technique on various dataflow to extract the
low-level information and provide optimization results after
balancing the different trade-off.

In conclusion, this work makes the following contributions,

• We propose dataflow decomposition into IRs for analyz-
ing the dataflow, which are formulated as integer mapping
functions that explicitly expose low-level architecture.

• We propose a systematic and efficient dataflow formula-
tion methodology that composes the dataflow in the sub-
space of each IR, which supports to search dataflow under
low-level constraints.

• We propose the methodology for dataflow implemen-
tation using Rubick IRs. By closing the semantic gap
between dataflow and architecture, Rubick allows various
optimization techniques and hardware generation.

Our experiments demonstrate that Rubick can reduce 82.4%
wire resources with only 2.7% latency increase by optimizing
access entry IR. For multi-kernel benchmark, Rubick shows
5.6X - 49X, 64X reduction for intermediate buffer size com-
pared to NVDLA [47] and TPU [23]. Rubick also accelerates
the DSE time of dataflows by 1.6×103X - 1.1×105X, saving
the time from several days to minutes compared to TENET
[39].

II. BACKGROUND

A. Tensor Basics

A tensor is defined as matrices with any number of dimen-
sions. The number of dimensions is defined as its order. For
example, a scalar is a zero-order tensor and a vector is a one-
order tensor.

Iteration domain and loop instance. Given a loop nest
with one statement, its iteration domain DS is the set that
contains all the loop instances. Each instance S is labeled
with a loop iterator n⃗ consisting of loop variables i, j, · · · .

DS = {S(n⃗) | n⃗ = (i, j, · · ·)}

Tensor domain. The tensor domain is the set of all the
elements in the tensor. The dimension of the tensor domain
is the same as its order. The tensor domain of tensor A is
denoted using n⃗′ consisting of tensor indexes.

DA =
{
A(n⃗′)

}
Access function. Given a loop instance, the access function

returns the tensor elements used by this instance, which can be
regarded as a mapping from iteration domain to tensor domain.

ADS→(DA,DB ,...) = {S(n⃗) → (A(n⃗′
A), B(n⃗′

B), · · ·)} (1)

2

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

For example, the instance, tensor domain, access function of
GEMM is written as follows.

S(n⃗) : Y (i, j)+ = A(i, k)×B(k, j), n⃗ = (i, j, k)

DA = {A(n⃗′) | n⃗′ = (i, k)}
ADS→(DA,DB) = {S(i, j, k) → (A(i, k), B(k, j))}

B. Spatial Dataflow
A key component of a spatial architecture is the dataflow

that determines how a tensor kernel is mapped onto the
architecture. In general, the dataflow is represented from
two aspects: 1) the space-stamp that describes where a loop
instance is executed, and 2) the time-stamp that describes when
a loop instance is executed. In this paper, we assume that
the space-stamp refers to the PE, and the time-stamp refers
to the execution cycle. Various notations have been proposed
recently, including compute-centric notation [71], data-centric
notation [29], [30], and relation-centric notation [39]. In this
paper, we choose to use the relation-centric notation, as it is
more expressive than the other two notations and can express
the complete design space of dataflows. Using relation-centric
notation, the dataflow is a set of relations where each relation
is a mapping from one loop instance to a space-stamp and
time-stamp.

ΘDS→Dst = {S(n⃗) → (PE(p⃗) | T (⃗t))} (2)

Dataflow spacetime domain (Dst) is the domain that
consists of multiple spacetime-stamps (space-stamp and time-
stamp), where each spacetime-stamp refers to a PE at a certain
cycle. ΘDS→Dst

assigns a loop instance S(n⃗) from iteration
domain to a spacetime-stamp from dataflow spacetime domain.
The space-stamp PE(p⃗) gives the coordinates of PE where
the instance will be executed, and the time-stamp gives the
execution sequence. t⃗ can be one or multi-dimensional and the
sequence is determined by the lexicographical order of time-
stamp T (⃗t). For example, S(0, 1, 0) → (1, 0 | 0, 1) means the
instance S(0, 1, 0) is executed in PE(1,0) at cycle(0,1).

Tensor movement. Given a tensor domain for a target
tensor A with its index vector n⃗′, the tensor movement is
defined as a mapping from the dataflow spacetime domain to
the tensor domain. For a specific dataflow spacetime-stamp, it
gives the required tensor element.

MDst→DA = {(PE(p⃗) | T (⃗t)) → A(n⃗′)} (3)

C. Motivation
Though prior dataflow frameworks [29], [30], [39], [71]

can accurately estimate performance metrics such as data
reuses, latency, etc., the semantic gap between these high-
level notations and low-level hardware renders it impossible
to infer the architectural implementation details and perform
structural analysis based on these notations. Figure 1 gives
three 1D-CONV dataflow examples with their low-level archi-
tecture implementations. The 1D-CONV instance is written as
follows.

S(i, j) : Y (i)+ = A(i+ stride · j)×B(j) (4)

To make a difference, we set the stride of dataflow (a), (b), (c)
as 1, 2, 1, respectively. In each dataflow, four instances in the

Fig. 1. Motivational example using 1D-CONV. Prior compute-centric [20],
[71], data-centric [24], [29], relation-centric [21], [39] approaches cannot
expose the low-level architecture, while primitive-based approach cannot
explicitly describe the dataflow. Rubick IR can bridge the semantic gap
between dataflow and architecture.

yellow parallelogram are executed simultaneously at the first
cycle(t = 0) on a 2× 2 PE array. The green parallelogram is
executed at the second cycle(t = 1).

First, prior notations do not directly describe the hard-
ware details. We observe that dataflow (a) and (b) share
the same dataflow notation, however, have different ar-
chitectures. To be specific, the data-centric notation [29],
[30] represents the dataflow by spatially allocating 2 el-
ements of tensor Y (SpMap(2,2) i), and 2 elements
of tensor B (SpMap(2,2) j). Using the relation-centric
notation, two continuous index i is horizontally mapped
to the PE array, and two continuous index j is verti-
cally mapped. Thus, the dataflow is written as {S(i, j) →
(PE(i%2, j%2) | T (i/2, j/2))}. To implement the dataflow,
in dataflow (a), the architecture shows a diagonal datapath
of tensor A. While dataflow (b) requires a vertical datapath.
Such low-level architectural features cannot be exposed by the
notations. Our access entry IR supports this, e.g., (x+y) means
diagonal access direction, (t1 − x) means vertical streaming
in different cycles.

On the other hand, the notation of dataflow (b) and (c)
is different. For example, using relation-centric notation,
two indexes of i with an interval are horizontally mapped
to the PE array. the dataflow is written as {S(i, j) →
(PE(i/2, j%2) | T (i%2, j/2))}. However, the architecture of
(b) is the same as (c), which means these notations cannot
capture the similarity between different dataflows, leading
to inefficiency of design space exploration. While in our

3

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

approach, we can clearly see the IRs of these two dataflows
are the same, resulting in the same implementation.

There are primitive-based representations for describing
the hardware implementation, like HeteroCL [32], Susy [33],
T2S [63], AutoSA [68]. These approaches are essentially
generation tools that adopt high-level languages and rely on
high level synthesis (HLS) to generate hardware. Figure 1
shows the T2S representation for dataflow (b) and (c). Though
it tells the implementation using hardware primitives, this
approach fails to model the dataflow behavior, e.g., when and
where a tensor element is used. Besides, they only cover a
subset of dataflow space. For example, it is hard to write the
primitive for non-orthogonal dataflow like (a).

The semantic gap between dataflow and architecture fun-
damentally results from the fact that 1) the computational
instance is a mixture of multiple tensor behavior, which needs
to be explicitly represented for architecture implementation,
2) the spatial architecture involves PE array part and memory,
which serve distinct purposes for tensor application execution.
Based on these two insights, we propose dataflow decompo-
sition that decomposes the dataflow into tensor movements,
and then decomposes the tensor movements into low-level
architectural IRs.

III. DATAFLOW ANALYSIS VIA DECOMPOSITION

The main novelty of Rubick is to decompose the dataflow
into two low-level intermediate representations (IRs): access
entry and data layout, which are expressive enough for archi-
tecture implementation. Another benefit of the decomposition
approach is efficient design space exploration. By defining rig-
orous architectural constraints for the subspace corresponding
to each IR, the combined space can be significantly pruned.
We derive these two IRs by defining a new domain called the
entry spacetime domain, as shown in Figure 2.

Definition 1: Entry spacetime domain (Est) is defined as
the domain that consists of multiple spacetime-stamps Est =
{(E(p⃗e) | T (t⃗e))}. The spacetime-stamp refers to an entry
port E(p⃗e) at a certain cycle T (t⃗e), which loads data from
memory and sends them to the PE array.
With this new domain, we can bridge the gap between dataflow
notation and architecture implementation.

• The left domains (iteration and tensor) in Figure 2 are
tensor application-driven domains, which are constituted
with loop instances and tensor data. The right domains
(dataflow and entry) are architecture-driven domains,
which are constituted with space-time stamps. Dataflow
(Θ) maps loop instances to space-time stamps, while data
layout (L) maps space-time stamps to tensor elements.

• The top domains (iteration and dataflow) are loop
instance-driven, while the bottom domains (tensor and
entry) are tensor data-driven. The access function (A)
bridges the tensor data with loop instances. On the
other hand, the dataflow spacetime domain represents a
complete architecture, including PE units, PE intercon-
nection, and memory. The access entry (Ω) decouples
these implementation details from spatial architecture.

• Entry spacetime domain is both architecture-driven and
data-driven domain. It is the interface between PE array

Fig. 2. Domains in dataflow decomposition.

and memory, which controls where and when one tensor
element is accessed. Thus, access entry provides the
datapath. data layout provides tensor data arrangement
and access sequence.

In this section, we first give the formal definition of access
entry, data layout, and decomposition (Section III-A). Then,
we use an example to illustrate how dataflow decomposition
helps for architecture implementation (Section III-B).

A. Dataflow Decomposition

To decouple each tensor behavior from the computational
instance, we first decompose it into different tensor movements
by applying the access function of each tensor.

ΘDst→DS = (MDst→DA ⊗MDst→DB , ...)×A(DA,DB ,···)→DS

(5)
Here, we choose to use the Cartesian product symbol ⊗ be-
cause the merged access function maps to the Cartesian space
of all tensors. The × symbol means the chain composition of
two mappings. Considering that the output tensor indices of
most tensor applications are determined by the indices of input
tensors, we only decompose the dataflow into movements of
input tensors in this paper. Taking GEMM as an example,

ΘDst→DS = (MDst→DA ⊗MDst→DB)×A(DA,DB)→DS

As shown in Figure 2, the tensor movement is further
decomposed into access entry Ω and data layout L. This helps
to decouple the PE array part and memory part from spatial
architecture.

Definition 2: Access entry. Given a dataflow spacetime
domain Dst of a dataflow, the access entry is defined as a
mapping from Dst to the entry spacetime domain Est.

ΩDst→Est = {(PE(p⃗d) | T (t⃗d)) → (E(p⃗e) | T (t⃗e))} (6)

Here, (PE(p⃗d) | T (t⃗d)) is a dataflow spacetime-stamp that
takes place in PE(p⃗d) at the time-stamp T (t⃗d). The tensor
used by this dataflow spacetime-stamp comes from the entry
space-stamp E(p⃗e) at the entry time-stamp T (t⃗e). If two
dataflow spacetime-stamps refer to the same entry spacetime-
stamp, it means they use the same tensor data.

From an architectural perspective, access entry indicates
how to design the on-chip memory. The space-stamp p⃗e tells
the dimension of memory banks and their allocation. On the
other hand, the time-stamp t⃗e describes the access pattern of
tensor data, which further determines the PE interconnection.

4

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 3. GEMM dataflow decomposition example. The dataflow is decomposed into access entry IR and data layout IR.

Definition 3: Data layout. Given an entry spacetime domain
Est and tensor A domain DA, the data layout is defined as a
mapping from Est to DA,

LEst→DA = {(E(p⃗e) | T (t⃗e)) → A(n⃗′)} (7)

Mathematically, this intermediate representation maps the in-
dices in the entry spacetime domain to the tensor indices.
Therefore, it explicitly depicts which tensor element is used
by the entry E(p⃗e) at T (t⃗e). Here, the term data layout is a
general definition that not only describes the data arrangement
spatially but also the access sequence of the tensor to or
from entry points. Moreover, the tensor size determines the
boundary of each time dimension, which further decides the
memory size.

By defining access entry and data layout, the decomposition
of tensor movement is formulated as follows.

MDst→DA = ΩA
Dst→Est

× LEst→DA (8)

Taking GEMM as an example, the decomposition formula is
written as follows.

ΘDst→DS
=

(
ΩA

Dst→Est
× LEst→DA

)
⊗

(
ΩB

Dst→Est
× LEst→DB

)
× A(DA,DB)→DS

(9)

B. Decomposition Example

In this subsection, we use GEMM dataflow as an example
to illustrate dataflow decomposition. As shown in Figure 3 (a),
the dataflow is written as follows.

ΘDS→Dst = {S(i, j, k) → PE(k, j%2) | T (i+ j%2, j/2)}

where the matrix size is set to 0 ≤ i < 2, 0 ≤ k < 2, 0 ≤ j <
4. This dataflow involves 2 spatial dimensions (2×2 PE array),
and 2 time dimensions (6 cycles in total). For simplicity, we
write the dataflow spacetime-stamp Dst in Figure 3 (a) as
{(x, y | t1, t2)}.

Then, we formulate the access entry of input tensor A and

tensor B, as shown in Figure 3 (b).

Tensor A ΩA
Dst→Est

= {(x, y | t1, t2) → (x, 0 | t1− y, t2)}
Tensor B ΩB

Dst→Est
= {(x, y | t1, t2) → (x, y | 0, t2)}

Identifying that the entry space-stamp is a 1D-vector (the
second dimension of entry space-stamp is 0), we know that
there is only one memory bank of tensor A for PEs in the
same row. On the other hand, this IR maps (x, y | t1, t2) and
(x, y+1 | t1+1, t2) in Dst to the same entry (x, 0 | t1−y, t2),
indicating that elements of tensor A horizontally traverse
across the PE array (along the y-axis). Thus, it requires
building interconnections between adjacent PEs in the same
row when designing the PE interconnection. The access entry
of tensor B shows the same spatial distribution as the PE array
but different time-stamps. The first dimension of the entry
time-stamp is 0, resulting in reduced memory requirements as
tensor B remains static in the PE register until the second time
dimension t2 changes.

In Figure 3 (c), we provide the data layout of both tensors
A and B with the spatial distribution of entries.

LEst→DA = {(E(x, 0) | T (t1, t2)) → A(t1, x)}
LEst→DB = {(E(x, y) | T (0, t2)) → B(x, 2 · t2 + y)}

Note that, the access entry IR only tells there is a data accessed
from entry to PE and its access direction. By composing it
with data layout IR, we can exactly figure out what exactly
this data is. For example, the data used by entry (0, 0 | 1, 0)
is A(1,0). Moreover, by analyzing which dimension of tensor
A is mapped to the space-stamp or the time-stamp, we can
know the arrangement of tensor elements in the memory, and
its access sequence.

IV. DATAFLOW DESIGN SPACE EXPLORATION

For a given dataflow, we can specify one of them and
calculate another according to Equation 8. Or, we can specify
both to compose the complete dataflow. Therefore, we can
form the access entry space and data layout space separately.
The access entry space is formed as a linear space that consists
of multiple linear combinations of access direction vectors
(Section IV-A). The data layout space enumerates all possible

5

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 4. Input access entry space on 2D-PE array. The space is formulated as tensor access direction vectors.

Fig. 5. Data layout space on 2D-PE array. The space is formulated as linear matrix transformation.

linear transformations that map spacetime-stamps to the tensor
domain (Section IV-B).

A. Access Entry Space

We assume that data are always accessed linearly, thus, the
access entry can be formulated as a linear combination of
base vectors. For example, access patterns like A[ai + j] are
considered linear while A[i2] is non-linear and not supported
by our model. From an architectural perspective, the base
vector equals to direction vector (dir-vec) r⃗ that indicates the
direction of how tensor elements are accessed across spatial
dimension and time dimension. For a given access entry, its
direction vectors r⃗ all satisfy MDst→DA

(r⃗) = 0. Inversely, we
can derive a unique access entry from a set of direction vectors.
According to the former assumption, the reuse direction vector
is a triple (x, y | t). In this manner, there are 7 basic direction
vectors in total.
X-systolic: (1, 0 | 1) Y-systolic: (0, 1 | 1) Stationary: (0, 0 | 1)
X-multicast: (1, 0 | 0) Y-multicast: (0, 1 | 0)
Diag-systolic: (1, 1 | 1) Diag-multicast: (1, 1 | 0)

As these vectors form a 3D space at most, the number of
direction vectors for a specific access entry is up to 3. The
number of all possible direction vector combinations is C1

7 +
C2

7 + C3
7 = 63. After removing the repeated linear space and

symmetric linear space, there are only 14 access entry types.
Figure 4 lists all of them on a 2D-PE array. Figure 4 (a)-
(c) are systolic patterns with horizontal, vertical and diagonal

(slope = 1) data transfer. In Figure 4 (d), the first dimension of
time-stamp is 0, representing each PE keeps the tensor element
stationary for a while. Figure 4 (e)-(g) are multicast networks
where entries spatially distribute like a 1D-vector. The last six
access entries in Figure 4 (i)-(n) are hybrid patterns.

Note that Figure 4 only depicts the cases of input access
entry. By reversing the access direction, it can also be applied
to output access entry. For example, multicast access entry
means the partial sums are generated simultaneously, while
systolic access entry means the partial sums are generated in
continuous cycles.

B. Data Layout Space

Our target architecture reads data from on-chip SRAM
buffers into the PE array, with the data layout space being
dependent on both the application (tensor domain) and the
architecture (entry spacetime domain). We apply linear matrix
transformation when forming its space. Mathematically, there
are only three basic transformations: 1) swap two rows, 2) add
one row to another, and 3) multiply a row by a factor. The
third one only occurs in quasi-affine transformation. E.g., in
Figure 3 (c), the data layout of tensor B has a coefficiency of
2. Due to the smaller size of the PE array (2 × 2) compared
to the size of tensor B (2×4), the second dimension of tensor
B needs to be tiled (i.e. is cut into smaller blocks, resulting
in a size of 2 × 2 × 2). The tensor access behavior mainly
depends on the first two transformations. Figure 5 depicts how

6

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 6. Architecture implementation using Rubick IRs.

the linear transformation affects the data layout. Figure 5 (b)
swaps the order of spatial dimension x and the innermost time
dimension t1 when mapping the indices in Est to the indices
in DA. Compared to Figure 5 (a), it acts like a transposition
when tensor A is a matrix. In Figure 5 (c), we add (−x) to
t1 in Est and map it to DA, leading to data skewing.

C. Entire Space Formation and Space Pruning

Both spaces are linear transformation spaces formed via
linear algebra. The difference lies in that the space of access
entry is formulated by direction vectors, which essentially are
the basis vectors in the complementary linear space. To find
out the correct access entry during decomposition, we only
need to test direction vectors and select the vectors that satisfy
MDst→DA

(r⃗) = 0. For example, we only need to test the 7
direction vectors for a 2D-PE array, and it is 15 for a 3D-PE
array. Besides, the architectural constraint, like interconnec-
tion topology, will affect the choice of these vectors during
dataflow exploration. On the other hand, the space of data
layout is formulated by a linear transformation. The space is
determined by both PE dimensions and tensor dimensions. For
example, assuming that we only apply linear transformation in
two dimensions, then, the data layout number of a 4D-tensor
is C2

4 × 4 = 24, where 4 means the four types in Figure 5.
By separately constructing the sub-space of each IR, the

total design space is dramatically reduced. We establish the
performance model for memories and bandwidths using meth-
ods similar to TENET [39]. We observe that employing a
simple branch-and-prune algorithm is sufficient to search the
entire design space within a reasonable time. Besides, we also
propose three general pruning strategies to further reduce the
overall space. The first one prunes the point that involves non-
full-rank mapping from the entry spacetime domain to the
dataflow spacetime domain. A non-full-rank mapping leads to
multiple data mapping to one entry point at one cycle. After
selecting the IRs of input tensors, we can obtain the movement
of output tensor. The second pruning strategy prunes the points
with wrong output results. The wrong output is due to the
unmatched tensor movement, specifically, unmatched access
entry or data layout. Similarly, the last pruning strategy will
check whether the final dataflow meets the full-rank constraint.

V. DATAFLOW IMPLEMENTATION

A. PE Architecture Implementation

As mentioned in Section III-A, access entry IR describes
the spatial location of entry points for data transfer between

tensor and PE, where each entry point corresponds to one
memory bank. The time information in access entry IR implies
the data transfer direction, which further determines the PE
interconnection topology. Figure 6 (a) shows the PE micro-
architecture of different types of access entry. Multicast entries
require broadcast wires between memory and PEs, without
inter-PE connections. These entries feature large fan-in or
fan-out but low pipeline latency. On the other hand, systolic
entries have the minimum fan-in or fan-out but have longer
latency to deliver data to all PEs. Using the stationary entry,
each PE loads data individually from different addresses,
thus exhibiting no interconnection. The architecture of the
reduction module is determined by the output access entry IR.
For example, the systolic entry only loads one result at each
cycle, and accumulates them via an adder array. The output
stationary entry updates iteratively in a local register.

B. Memory Implementation

As shown in Figure 6 (b), data layout IR directly determines
the memory hierarchy and tensor data layout. Clearly, this
IR is responsible for partitioning tensors to different banks
and generating the address of each bank. The memory
hierarchy is modeled as multi-dimensional timestamps. In
this model, the innermost time dimensions intricately depict
the behavior of on-chip memory, while the outer dimensions
aptly capture the memory behavior exhibited by DRAM or
host memory. For example, we can label the time-stamp as
(T (PE register file), T (on-chip SRAM), T (off-chip DRAM)).
Based on the tensor index range, we can get the range of each
time-stamp, which further determines the memory size. In
our experiments, we provide the optimization of intermediate
buffer size for multi-kernel applications.

C. Hardware Generation

As Rubick IRs explicitly expose implementation details,
we develop an automatic hardware generation tool using
Chisel [3] templates, as shown in Figure 6 (c). The generator
takes tensor computation expressions specified by index range
as inputs and generates a complete hardware design. First,
it decomposes the dataflow into IRs. The dataflow can be
specified by the user or searched from the design space. Then,
we can generate the datapath logic based on access entry
IRs, which have two sets of different templates, depending
on whether the tensor is input or output. Note that IRs can
also be specified by users. Finally, the data layout IRs help

7

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE I
DATAFLOW DECOMPOSITION VISUALIZATION. ALL DATAFLOWS ARE MODELED ON A 8×8 PE ARRAY. IN THE ACCESS ENTRY, A-(A) MEANS TENSOR A

IS ACCESS IN TYPE-(A) PATTERN OF FIGURE 4. IN THE DATA LAYOUT, WE ONLY PICTURE FOUR TENSOR ELEMENTS FOR SIMPLICITY. DIFFERENT COLOR
REPRESENTS DIFFERENT TENSOR. YELLOW: TENSOR A. BLUE: TENSOR B. GREEN: TENSOR Y.

Benchmark Dataflow Access Entry Data Layout

GEMM

GEMM-(a)
S(i,j,k)→PE(j%8,i%8)
S(i,j,k)→T(i%8+j%8+k,⌊i/8⌋,⌊j/8⌋)
motivated by OuterSpace [48]

A-(a),B-(b),Y-(d) E(0,y | t1,t2,t3)→
A(y+8·t2,-y+t1)

E(x,0 | t1,t2,t3)→
B(-x+t1,x+8·t3)

E(x,y | 0,t2,t3)→
Y(y+8·t2,x+8·t3)

GEMM-(b)
S(i,j,k)→PE(k%8,j%8)
S(i,j,k)→T(i+j%8+k%8,⌊j/8⌋,⌊k/8⌋)
applied in TPU [23]

A-(b),B-(d),Y-(a) E(x,0 | t1,t2,t3)→
A(-x+t1,x+8·t3)

E(x,y | 0,t2,t3)→
B(x+8·t3,y+8·t2)

E(0,y | t1,t2,t3)→
Y(-y+t1,y+8·t2)

2DCONV

2DCONV-(a)
S(k,c,ox,oy,rx,ry)→PE(k%8,c%8)
S(k,c,ox,oy,rx,ry)→T(ox,oy,rx,ry,⌊k/8⌋,⌊c/8⌋)
applied in DianNao [6] and NVDLA [47]

A-(d),B-(e),Y-(f) E(x,y | 0,t2,t3,t4,t5,t6)→
A(x+8·t5,y+8·t6,t3,t4)

E(0,y | t1,t2,t3,t4,t5,t6)→
B(y+8·t6,t1+t3,t2+t4)

E(x,0 | t1,t2,t3,t4,t5,t6)→
Y(x+8·t5,t1,t2)

2DCONV-(b)
S(k,c,ox,oy,rx,ry)→PE(ox%8,k%8)
S(k,c,ox,oy,rx,ry)→
T(k%8+ox%8+rx,c,oy,ry,⌊k/8⌋,⌊ox/8⌋)

A-(a),B-(j),Y-(d) E(0,y | t1,t2,t3,t4,t5,t6)→
A(y+8·t5,t2,-y+t1,t4)

E(0,0 | t1,t2,t3,t4,t5,t6)→
B(t2,t1+8·t6,t3+t4)

E(x,y | 0,t2,t3,t4,t5,t6)→
Y(y+8·t5,x+8·t6,t3)

2DCONV-(c)
S(k,c,ox,oy,rx,ry)→PE(oy%8+ry%8,oy%8)
S(k,c,ox,oy,rx,ry)→
T(ox+oy%8+ry%8,k,c,rx,⌊oy/8⌋,⌊ry/8⌋)

A-(m),B-(f),Y-(a) E(x,0 | 0,t2,t3,t4,t5,t6)→
A(t2,t3,t4,x+8·t6)

E(x,0 | t1,t2,t3,t4,t5,t6)→
B(t3,-x+t1+t4,x+8·t5+8·t6)

E(0,y | t1,t2,t3,t4,t5,t6)→
Y(t2,t1,y+8·t5)

to generate the memory modules and address generators for
data control and data transfer. The index range determines the
range of time-stamps, which further determines the memory
size. Furthermore, our hardware generator is modular and can
be extended for different spatial architecture designs.

VI. EXPERIMENT

This section evaluates Rubick. In Section VI-A, we present
the experimental settings, including benchmarks and imple-
mentation. Section VI-B presents the analysis results of var-
ious dataflow using our decomposition methodology. Section
VI-C and Section VI-D provide the exploration results of
access entry IR and data layout IR, respectively, including the
evaluation of trade-offs between latency, fan-in/fan-out, and
memory size. In Section VI-E, we compare the DSE explo-
ration efficiency with the state-of-the-art modeling framework
TENET [39]. Finally, we show the implementation results on
ASIC (Section VI-F and VI-G) to demonstrate that Rubick
can perform various architectural optimizations.

A. Experiment Setup

Benchmarks. We evaluate the following benchmarks.

GEMM Y (i, j)+ = A(i, k)B(k, j)

2D-CONV Y (n, k, ox, oy)+ = A(k, c, rx, ry)B(n, c, ox+ rx, oy + ry)

MMc Y (i, j)+ = A(i, k)B(k, l)C(l, j)

MTTKRP Y (i, j)+ = A(i, k, l)B(k, j)C(l, j)
(10)

GEMM and 2D-CONV are single kernels, which are widely
used in deep learning and scientific computing [1], [2], [27],
[62]. Matrix multiplication chain (MMc) is used in the at-
tention mechanism of transformer models [12], [34], [57].
Matricized tensor times Khatri-Rao product (MTTKRP) tensor
operation is the bottleneck operation in tensor factorization
(e.g., recommender systems) [4], [44].

implementation. Rubick support two implementation back-
ends, including ASIC and FPGA platform. We use Chisel
cycle-accurate simulator to evaluate the performance. We
apply Chisel compiler [3] to generate Verilog RTL. For ASIC
implementation, we use Synopsys Design Compiler to estimate
the area and energy of under the UMC 55nm technology. For
FPGA platform, we then use Xilinx Vivado to synthesize the
bitstream for FPGA implementation. Empirically, we assign
the first two time dimensions of data layout IR to on-chip

8

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 7. Using Rubick access entry IRs to explore hardware design. a-g means
the access entry type in Figure 4.

BRAMs, with the rest scheduled to off-chip DRAM.

B. Dataflow Analysis via Decomposition

For the GEMM benchmark, we use Rubick to analyze two
popular dataflows that applied in TPU [23] and OuterSpace
[48]. We visualize the dataflow decomposition of each tensor,
and analyze the architecture implementation, as shown in
Table I. According to the access entry of GEMM-(a) dataflow,
we can clearly know that both two input tensors are stored in
1D banks, and each PE is responsible for a different output
element. We can also understand how to schedule the data
according to the data layout. Clearly, two input tensors are
accessed with skewing from memory to PEs, while each
output element is kept in the PE register until the second
time dimension t2 changes. The access entry of TPU dataflow
indicates that the architecture requires downward accumulators
to gather the results and store them to memory via the bottom
PEs. The data layout tells that tensor A and output are skewed
when scheduling, while tensor B is kept stationary in the PE.

2D-CONV is a much more complex tensor benchmark that
involves six loops. We present the decomposition of one
common 2D-CONV dataflow and two dataflows found by
Rubick, which minimizes the number of memory ports. 2D-
CONV (a) dataflow is applied in DianNao [6] and NVDLA
[47], leveraging the parallelism in the k and c dimensions that
show less data dependency. This dataflow requires 8 memory
ports in total where tensor B is vertically broadcast to PEs.
Different from GEMM-(b), the output access entry of 2D-
CONV (a) indicates that multiplication results are generated
simultaneously, which means there needs an adder tree to
gather the results. To minimize the port number of tensor
B, 2D-CONV (b) dataflow specifies tensor B access entry
as a scalar (type (j): Y-systolic-X-multicast in Figure 4).
Consequently, the data layout of tensor B is expanded only
in time dimensions (x==0, y==0). While 2D-CONV (c)
dataflow tries to adopt systolic entry or multicast entry for
all tensors to minimize the port number. To this end, the PE
array is transformed to parallelogram shape where tensor A is
diagonally broadcast to PEs and kept stationary, and results are
downward accumulated. We also observe that the data layout
of tensor B is skewed to match the parallelogram PE array.

C. Access Entry IR-based Exploration

As mentioned in Section III-A, the access entry describes
the memory ports and PE interconnection, which further deter-
mines the required scratchpad bandwidth. Therefore, Rubick

Fig. 8. Using Rubick data layout IRs to explore hardware design.
rx, ry, ox, oy, k, c are tensor indices in Equation 10

Fig. 9. Analyzing the trade-off between buffer size, bandwidth, PE utilization
using data layout IR.

can be used to explore various trade-offs among different
hardware implementations by analyzing the access entry of the
dataflows, e.g., the trade-off between latency and fan-in/fan-
out, latency and memory size, fan-in/fan-out and bandwidth
requirement.

Figure 7 illustrates the trade-off between latency and fan-
in/fan-out, where each data point represents a complete
dataflow of GEMM with a shape of 64 × 64 × 64. The
axis means different access entry choices, while the color
of points represents the latency on the left of Figure 7 (the
darker the longer latency), and represents the fan-in/fan-out
wires in the right of Figure 7 (the darker the more fan-in/fan-
out), respectively. The dataflows in group I require fewer wire
resources, but show the longest latency, as most tensors apply
type-(a) or type-(b) access entry (refer to Figure 4). These two
types show systolic movements, which need fewer memory
ports but take more cycles to load/store input/output data. The
dataflows in group III mainly feature multicast access entry
types, which leads to lower latency but higher fan-in/fan-out
requirements due to more wires connected with the scratchpad.
The dataflows in group II are hybrids of group I and III.
Overall, Rubick allows users to make a trade-off between wire
resources and latency. For example, group I can reduce 82.4%
wire resources compared to group III, with only 2.7% latency
increase.

9

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 10. Exploration-efficiency improved by Rubick.

D. Data Layout IR-based Exploration

Figure 8 illustrates the trade-off between latency and mem-
ory size by analyzing the data layout in 2DConv. The input
has a shape of 256 × 64 × 64, and the kernel has a shape
of 256 × 256 × 8 × 8. Here we refer memory as the on-chip
scratchpad that stores a tile of data for inner-most time-stamp
t1. Each group here may involve multiple dataflows depending
on the linear transformation between t1 and tensor indices. In
group I, the data layout maps the time dimension to smaller
tensors, which has longer latency but requires less memory
(e.g., map rx, ry to t1). Inversely, the dataflows in group III
need more memory but show lower latency. The lowest latency
point in group II can reduce 67.8% memory compared to the
lowest latency point in group III.

Previously, we assume that only the first time dimension
(TD) of data layout IR is assigned to the on-chip memory.
Figure 9 (a) shows the trade-off between buffer size and
bandwidth when assigning multiple time dimensions. As a
result, more on-chip time dimensions lead to a larger buffer
size. However, it does not necessarily reduce the bandwidth
requirement, depending on whether the dimension provides the
data reuse opportunities. For example, 2TD and 3TD cases
of TPU have the same bandwidth requirement. This can be
explained by the fact that the third time dimension is mapped
to the k tensor dimension (GEMM-(b) in Table I), which is a
reduction dimension that contributes no reuse.

The tensor index range determines the time range in the
data layout IR, which affects the required buffer size and PE
utilization. We evaluate different shapes using NVDLA [47]
2DCONV dataflow (2DCONV-(a) in Table I) on VGG network
[61], as shown in Figure 9 (b). As shown in the NVDLA
dataflow in Table I, the range of inner time dimensions (ox, oy)
reduces when the network goes deeper, which causes the
required buffer size to decrease. The utilization of CONV1 1
layer is low due to the small input channel size (c = 3),
resulting in low PE utilization. For GEMM case, OuterSpace
[48] dataflow (GEMM-(a) in Table I) adopts outer-product
parallelism. Therefore, the I = 4 case cannot fully utilizes
the PE array. The K = 4 case has less reuse opportunities,
thus causing high transfer cost and PE array under utilized.

E. Exploration Comparison with TENET

Figure 10 (b) presents the breakdown exploration efficiency
for 2DCONV. Since the loop boundary is usually larger than
the PE array size, the original six loops are tiled into eight
loops with two mapped to the PE array. The space of TENET
is huge with many inferior dataflows. We reduce this space

Fig. 11. TENET inferior dataflow with under-utilized PE.
TABLE II

DATA LAYOUT IR OF DIFFERENT DESIGN.

Benchmark Dataflow Output Layout Input Layout

SCONV+
PCONV
[19]

NVDLA
[47]

E(x,0 | t1,· · · ,t6)→
P(x+8·t6,t1,t2)

E(0,y | t1,· · · ,t4)→
P(y+8·t4,t1,t2)

ShiDian
nao [13]

E(x,y | t1,· · · ,t6)→
P(t4,x+8·t5,y+8·t6)

E(x,y | t1,· · · ,t4)→
P(t1,x+8·t3,y+8·t4)

Rubick E(x,0 | t1,· · · ,t6)→
P(-x+t1, t5, x+8·t6)

E(x,0 | t1,· · · ,t4)→
P(-x+t1, t3, x+8·t4)

CONV+
FC [28]

NVDLA
[47]

E(x,0 | t1,· · · ,t7)→
P(t6,x+8·t7,t1,t2)

E(0,y | t1,· · · ,t5)→
P(t1,y+8·t5,t2,t3)

TPU [23] E(0,y | t1,· · · ,t7)→
P(y,-y+t1,t6,t7)

E(x,0 | t1,· · · ,t5)→
P(-x+t1,x+8·t3,t4,t5)

Rubick E(0,y | t1,· · · ,t7)→
P(y,-y+t1,t6,t7)

E(0,y | t1,· · · ,t5)→
P(-y+t1,y+8·t3,t4,t5)

GEMM+
SoftMax+
GEMM [34]

TPU [23] E(0,y | t1,t2,t3)→
P(-y+t1,y+8·t2)

E(x,0 | 0,t2,t3)→
P(-x+t1,x+8·t3)

Rubick E(x,y | 0,t2,t3)→
P(x+8·t3,y+8·t2)

E(x,y | 0,t2,t3)→
P(x+8·t3,y+8·t2)

dramatically because we separately form the sub-space of each
IR and then compose them together. The initial Rubick space
is 6,773,760 (196 points in access entry space, 34560 points in
data layout space). The three pruning strategies furthers prunes
the space. Clearly, pruning strategies 1 and 3 achieve 4.32X
and 20.5X space reduction by pruning non-full-rank cases,
respectively; pruning strategy 2 leads to 3.62X reduction by
removing the wrong output cases.

Mathematically, each dataflow in TENET space can be
uniquely decomposed into access entry and data layout. While
the inferior dataflows involve inefficient data layouts that
underutilize the PE array.

ΘDS→Dst = {S(i, j, k) → PE(i+ j, i+ k) | T (j + k)}

For example, the above dataflow leads to diagonal-interleaved
PE utilization as shown in Figure 11. According to our
dataflow decomposition methodology, such under-utilization
results from inferior data layout that has fractional coeffi-
ciency, as follows.

LEst→DA = {(E(x, 0) | T (t)) → A(0.5x− 0.5t, 0.5x+ 0.5t)}

However, Rubick effectively prunes these cases when forming
the data layout IR space.

F. Multi-kernel Implementation on ASIC

Real-world tensor applications often involve multiple depen-
dent kernels. For example, 3 × 3 CONV layers followed by
1×1 CONV layers are widely used in convolutional neural net-
works (CNNs) such as ResNet [35] and GoogleNet [65]. Prior
accelerator designs usually process these kernels sequentially
and consecutive layers use different data layouts for output
and input. This leads to a large buffer or DRAM to cache
the intermediate results. The architectural details exposed by

10

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 12. Data layout IR optimization for multi-kernel.

Fig. 13. Area and power breakdown via GEMM dataflow decomposition.
The X-axis is different dataflows notated by access entry. E.g., (bda) means,
tensor A, B, Y applies type-(a), type-(d), type-(b) access entry of Figure 4.

Rubick allow us to optimize the buffer size by using similar
data layout IRs for multi-kernel dataflows.

Figure 12 compares buffer sizes, where SCONV+PCONV
representing spatial convolution and point-wise convolution,
respectively. Rubick achieves 49X and 8X reduction compared
to NVDLA and ShiDiannao for the first case, respectively. It
achieves 5.6X reduction compared to NVDLA for the second
case and 64X reduction compared to TPU for the last case.
Table II provides the analysis results using Rubick data layout
IR. Shi-Diannao [13] maps the same tensor dimension to
different time-stamps. In the output layout, the first tensor
dimension is mapped to an outer time-stamp t4, while in
the input layout, it is mapped to the innermost time-stamp
t1. As a result, the tensor data in the first dimension needs
to be buffered across multiple iterations, leading to large
intermediate buffer size. Though TPU [23] shows the same
buffer size as Rubick in CONV+FC benchmark, it requires
a transposition operation for data rearrangement due to the
different space-stamps between their output and input layout,
with one indexed by E(x, 0| · · ·) and the other E(0, y| · · ·).
Thus, it needs to reload the tile, resulting in the loss of
the benefit gained from fusing two kernels, which leads to
an increase in both data movement power consumption and
computation time.

G. Area and Power Analysis on ASIC

In this section, we generate the design from our hardware
generator and synthesize the RTL code to evaluate the trade-
off between area and power. Figure 13 (a) presents the area
breakdown of various GEMM dataflows on an 8×8 PE array
with 16-bit integer arithmetic. The memory area is obtained
from UMC 55nm SRAM library. We consider the minimum
memory size that only stores the data required in the first
time-stamp of data layout IR. We observe that the output
access entry accounts for the most area as it needs to im-
plement reduction operations (e.g., adder tree, accumulators).
Dataflows with multicast entries type-(e), type-(f), or type-(g)

TABLE III
FPGA PERFORMANCE COMPARISON

Device LUT DSP BRAM MHz GFLOP/s

AutoSA [68] U250 56% 77% 30% 272 950
TensorLib [21] VU9P 73% 75% 73% 245 626
EMS-WS [22] VU9P 76% 73% 53% 301 731
EMS-OS [22] VU9P 83% 73% 53% 295 717

Rubick VU9P 46% 70% 11% 333 1066

(refer to Figure 4) require less area as they only need wires to
broadcast data. While systolic entries are implemented using
FIFOs with control logic. In Figure 13 (b), the memory power
is negligible due to the small PE array size. We observe that
multicast entries require more energy due to their large fan-
out. Stationary entries type-(d) are the most energy-saving one
as their registers are idle in most cycles.

Based on the pre-synthesized results of each IR, Rubick can
accurately estimate the area and power of a complete design.
We estimate area and power by separately synthesizing the
modules implementing each kind of access entry and adding
them together. The golden result is acquired by synthesizing
the complete design. Compared to the golden synthesis results,
Rubick achieves an accuracy of 91.96% and 91.09% for area
and power. For TPU [23] dataflow, Rubick is 91.27% and
92.69% accurate for area and power, while the accuracy of
TENET is only 60.22% and 88.79%. This is because TENET
relies on simple polynomials of its high-level metrics (Reuse
Volume) to estimates area and power, while Rubick relies on
low-level IRs with accurate architectural details.

H. FPGA Implementation

Table III compares the FPGA performance of Rubick with
AutoSA [68], TensorLib [21] and EMS [22] on 2D-CONV. We
select the late layers on VGG-19 [61] with FP32 precision as
the test bench. We limit the access entry space to suit the
features of FPGAs to search for better dataflows. We remove
all access entries with a multicast direction vector for the
input tensors due to the limited routing resource and improve
the frequency by 10.6%. We select the X-multicast access
entry for the output tensor (i.e. adder trees) to avoid data
interleaving, which saves BRAM by 5X since only one tile
needs to be processed at a time. Rubick also optimized the
hardware generation flow. LUT and DSP are further optimized
as we can fully analyze the data movement thus simplifying
the control logic by avoiding handshaking and additional
FIFOs. Overall, we improved the peak performance by 12%
and 49%, compared against AutoSA [68] and EMS-WS [22],
respectively.

VII. RELATED WORKS

Dataflow Modeling. Dataflow modeling can provide gen-
eral guidelines and insights for optimizing the dataflow. Prior
dataflow models mainly focus on tensor applications on spatial
architectures [8], [11], [20], [29], [30], [36], [39], [40], [49],
[52], [71], [72]. A few of them propose dataflow notations
to precisely describe how the instance is executed [11], [20],

11

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[29], [30], [39], [49], [71]. For example, TENET [39] pro-
poses relation-centric notation that regards the dataflow as
a mapping function between iteration domain and hardware.
In [11], dataflow is annotated using two hyperplanes with
the polyhedral dependency graph. Kwon et al. [29], [30]
propose a data-centric notation to specify the data distribution
in spatial dimensions and time dimensions. Timeloop [49] and
Interstellar [71] annotates dataflow using loop nest with some
hardware directives. For example, Timeloop [49] introduces
mapping directives for memory hierarchy and PE workload
assignment. While Interstellar [71] extends Halide [58] with
additional control directives, e.g., loop blocking and
resource allocation, for specifying the hardware fea-
tures. CoSA [20] uses a binary matrix to represent the spatial
and temporal mapping. However it only aims at DNN and the
solver-based approach does not support varied dataflows that
that apply linear transformation between different dimensions.
There are also prior works aiming at modeling the spatial
architecture for general applications [36], [46], [52].

Spatial Architecture Generation. Spatial architectures re-
quire extensive manual effort to design the hardware modules.
Therefore, many recent works propose generation tools to
automatically design the architecture [10], [15], [26], [33],
[53], [60], [68], [69]. DSAGEN [69] is a framework that
applies a hardware/software co-design approach for generating
reconfigurable architectures. DSAGEN proposes a compilation
flow with a design space exploration algorithm based on
modular architecture components. Spatial [26] is a domain-
specific language for spatial accelerators, which provides
hardware-specific abstractions for control, memory, and design
tuning. µIR is an intermediate representation for describing
the micro-architecture of spatial accelerators [60]. It decouples
the architecture from the algorithm and is translated to Chisel
for hardware generation. These works act like black boxes
that transform the dataflow into IRs to generate architecture,
however, make it difficult for users to interpret the relationship
between dataflow and architecture.

VIII. CONCLUSION

In this work, we propose an infrastructure for analyz-
ing, exploring, and implementing the architecture of spatial
dataflows. Our dataflow decomposition features two inter-
mediate representations access entry and data layout, which
formally and systematically provide the implementation details
of spatial architecture. We also propose an efficient exploration
approach by separately forming the subspace of these two
intermediate representations. Finally, Rubick enables various
low-level implementation optimizations, and accelerates the
DSE time of dataflows by up to 1.1× 105X, saving the time
from days to minutes.

ACKNOWLEDGEMENTS

This work was supported in part by the National Key R&D
Program of China under Grant (No. 2022YFB4500401). This
work was also supported in part by National Natural Science
Foundation of China (NSFC) under grant No.62090021 and
No. 61825205.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Symposium on Operating Systems Design and
Implementation, 2016.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Ten-
sor decompositions for learning latent variable models,” The Journal of
Machine Learning Research, 2014.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Proceedings of the Design Automation
Conference, 2012.

[4] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings of KDD
cup and workshop, 2007.

[5] P. Chatarasi, H. Kwon, A. Parashar, M. Pellauer, T. Krishna, and
V. Sarkar, “Marvel: A data-centric approach for mapping deep learning
operators on spatial accelerators,” ACM Trans. Archit. Code Optim.,
2022.

[6] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, 2014.

[7] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ACM
SIGARCH Computer Architecture News, 2016.

[8] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2019.

[9] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, 2014.

[10] J. Cong and J. Wang, “PolySA: Polyhedral-Based Systolic Array
Auto-Compilation,” in Proceedings of the International Conference on
Computer-Aided Design, 2018.

[11] S. Dave, A. Shrivastava, Y. Kim, S. Avancha, and K. Lee, “dMazeRun-
ner: Optimizing Convolutions on Dataflow Accelerators,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, 2020.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT, 2019.

[13] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, 2015.

[14] D. M. Dunlavy, T. G. Kolda, and W. P. Kegelmeyer, “Multilinear algebra
for analyzing data with multiple linkages,” in Graph algorithms in the
language of linear algebra, 2011.

[15] D. Durst, M. Feldman, D. Huff, D. Akeley, R. G. Daly, G. L. Bern-
stein, M. Patrignani, K. Fatahalian, and P. Hanrahan, “Type-directed
scheduling of streaming accelerators,” in Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, 2020.

[16] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A configurable
cloud-scale dnn processor for real-time ai,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture. IEEE,
2018.

[17] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
2012.

[18] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind mappings: enabling efficient algorithm-accelerator map-
ping space search,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 943–958.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[20] Q. Huang, A. Kalaiah, M. Kang, J. Demmel, G. Dinh, J. Wawrzynek,
T. Norell, and Y. S. Shao, “Cosa: Scheduling by constrained optimiza-
tion for spatial accelerators,” in 48th ACM/IEEE Annual International
Symposium on Computer Architecture, 2021.

12

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[21] L. Jia, Z. Luo, L. Lu, and Y. Liang, “Tensorlib: A spatial accelerator
generation framework for tensor algebra,” in 58th ACM/IEEE Design
Automation Conference (DAC), 2021.

[22] L. Jia, Y. Wang, J. Leng, and Y. Liang, “EMS: efficient memory
subsystem synthesis for spatial accelerators,” in Proceedings of DAC,
2022.

[23] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
2017.

[24] S. Kao and T. Krishna, “GAMMA: automating the HW mapping of
DNN models on accelerators via genetic algorithm,” in IEEE/ACM
International Conference On Computer Aided Design, ICCAD, 2020.

[25] S. Kao, A. Parashar, P. Tsai, and T. Krishna, “Demystifying map space
exploration for npus,” in IEEE International Symposium on Workload
Characterization, IISWC 2022, Austin, TX, USA, November 6-8, 2022,
2022.

[26] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis et al., “Spatial: A language
and compiler for application accelerators,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2018, pp. 296–311.

[27] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, 2009.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, 2012.

[29] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding reuse, performance, and hardware cost of dnn
dataflow: A data-centric approach,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019.

[30] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and
A. Parashar, “Maestro: A data-centric approach to understand reuse,
performance, and hardware cost of dnn mappings,” IEEE Micro, 2020.

[31] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” in ACM SIGPLAN Notices, 2018.

[32] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “HeteroCL: A multi-paradigm programming infrastructure
for software-defined reconfigurable computing,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2019, pp. 242–251.

[33] Y.-H. Lai, H. Rong, S. Zheng, W. Zhang, X. Cui, Y. Jia, J. Wang,
B. Sullivan, Z. Zhang, Y. Liang et al., “SuSy: A Programming Model
for Productive Construction of High-Performance Systolic Arrays on
FPGAs,” in International Conference on Computer Aided Design, 2020.

[34] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” ACL, 2020.

[35] R. Likamwa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Redeye:
Analog convnet image sensor architecture for continuous mobile vision,”
Acm Sigarch Computer Architecture News, 2016.

[36] D. Liu, S. Yin, L. Liu, and S. Wei, “Polyhedral model based mapping
optimization of loop nests for CGRAs,” in Proceedings of the 50th
Annual Design Automation Conference, 2013.

[37] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “Pudiannao: A polyvalent machine learning accelerator,”
in ACM SIGARCH Computer Architecture News, 2015.

[38] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture. IEEE, 2016.

[39] L. Lu, N. Guan, Y. Wang, L. Jia, Z. Luo, J. Yin, J. Cong, and
Y. Liang, “Tenet: A framework for modeling tensor dataflow based on
relation-centric notation,” in 2021 ACM/IEEE 48rd Annual International
Symposium on Computer Architecture, 2021.

[40] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,” in
2017 IEEE International Symposium on High Performance Computer
Architecture, 2017.

[41] Z. Luo, L. Lu, S. Zheng, J. Yin, J. Cong, Y. Liang, and J. Yin,
“Rubick: A Synthesis Framework for Spatial Architectures via Dataflow
Decomposition,” in 60th ACM/IEEE Design Automation Conference
(DAC), 2023.

[42] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
understanding rating dimensions with review text,” in the conference
on Recommender systems, 2013.

[43] L. Mei, P. Houshmand, V. Jain, J. S. P. Giraldo, and M. Verhelst,
“Zigzag: A memory-centric rapid DNN accelerator design space
exploration framework,” 2020. [Online]. Available: https://arxiv.org/abs/
2007.11360

[44] NELL-2, http://frostt.io/tensors/.
[45] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,

“Stream-dataflow acceleration,” in ACM/IEEE 44th Annual International
Symposium on Computer Architecture, 2017.

[46] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili, “A general constraint-centric scheduling framework
for spatial architectures,” ACM SIGPLAN Notices, 2013.

[47] NVIDIA, http://nvdla.org/, 2020.
[48] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,

H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace:
An outer product based sparse matrix multiplication accelerator,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 724–736.

[49] A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A systematic approach to dnn accelerator evaluation,” in 2019 IEEE
International Symposium on Performance Analysis of Systems and
Software, 2019.

[50] A. Parashar, P. Chatarasi, and P.-A. Tsai, “Hardware abstractions for
targeting eddo architectures with the polyhedral model,” in 11th In-
ternational Workshop on Polyhedral Compilation Techniques (Vitural
Event)(IMPACT 2021), 2021.

[51] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel et al., “Triggered instruc-
tions: a control paradigm for spatially-programmed architectures,” ACM
SIGARCH Computer Architecture News, 2013.

[52] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, 2008.

[53] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan,
S. W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2019, pp. 137–151.

[54] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in ACM/IEEE 44th Annual Interna-
tional Symposium on Computer Architecture, 2017.

[55] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: balancing efficiency &
flexibility in specialized computing,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013.

[56] X. Qingcheng, Z. Size, W. Bingzhe, X. Pengcheng, Q. Xuehai, and
L. Yun, “HASCO: Towards Agile HArdware and Software CO-design
for Tensor Computation,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture, 2021.

[57] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI blog,
2019.

[58] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” Acm Sigplan
Notices, 2013.

[59] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Efficient spmv operation for large and highly sparse matrices us-
ing scalable multi-way merge parallelization,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019.

[60] A. Sharifian, R. Hojabr, N. Rahimi, S. Liu, A. Guha, T. Nowatzki,
and A. Shriraman, “µir-an intermediate representation for transforming
and optimizing the microarchitecture of application accelerators,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 940–953.

[61] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in arXiv preprint arXiv:1409.1556,
2014.

13

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[62] S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proceedings of the Workshop on Irregular Applica-
tions: Architectures and Algorithms, 2015.

[63] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Al-
bonesi, V. Sarkar, W. Chen, P. Petersen et al., “T2s-tensor: Productively
generating high-performance spatial hardware for dense tensor compu-
tations,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2019,
pp. 181–189.

[64] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003.

[65] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015.

[66] S. Venkataramani, V. Srinivasan, W. Wang, S. Sen, J. Zhang, A. Agrawal,
M. Kar, S. Jain, A. Mannari, H. Tran, Y. Li, E. Ogawa, K. Ishizaki,
H. Inoue, M. Schaal, M. J. Serrano, J. Choi, X. Sun, N. Wang, C. Chen,
A. Allain, J. Bonanno, N. Cao, R. Casatuta, M. Cohen, B. M. Fleischer,
M. Guillorn, H. Haynie, J. Jung, M. Kang, K. Kim, S. Koswatta,
S. K. Lee, M. Lutz, S. Mueller, J. Oh, A. Ranjan, Z. Ren, S. Rider,
K. Schelm, M. Scheuermann, J. Silberman, J. Yang, V. Zalani, X. Zhang,
C. Zhou, M. M. Ziegler, V. Shah, M. Ohara, P. Lu, B. W. Curran,
S. Shukla, L. Chang, and K. Gopalakrishnan, “Rapid: AI accelerator for
ultra-low precision training and inference,” in 48th ACM/IEEE Annual
International Symposium on Computer Architecture, 2021.

[67] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proceedings of the 2nd
ACM workshop on Online social networks, 2009.

[68] J. Wang, L. Guo, and J. Cong, “AutoSA: A Polyhedral Compiler
for High-Performance Systolic Arrays on FPGA,” in Proceedings of
the 2021 ACM/SIGDA international symposium on Field-programmable
gate arrays, 2021.

[69] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen:
Synthesizing programmable spatial accelerators,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 268–281.

[70] Y. N. Wu, P. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop:
An analytical approach to sparse tensor accelerator modeling,” in
55th IEEE/ACM International Symposium on Microarchitecture, MICRO
2022, Chicago, IL, USA, October 1-5, 2022, 2022.

[71] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using
halide’s scheduling language to analyze dnn accelerators,” in Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020.

[72] D. Zhang, S. Huda, E. M. Songhori, K. Prabhu, Q. V. Le, A. Goldie,
and A. Mirhoseini, “A full-stack search technique for domain optimized
deep learning accelerators,” in Proceedings of ASPLOS ’22: 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022.

[73] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020.

Liqiang Lu is a ZJU100 Young Professor in the
College of Computer Science, Zhejiang University
(ZJU), China. His research interests include quantum
computing, computer architecture, deep learning ac-
celerator, and software-hardware codesign. He has
authored more than 20 scientific publications in
premier international journals and conferences in
related domains, including ISCA, MICRO, HPCA,
ASPLOS, FCCM, DAC, IEEE Micro, and TCAD.
He also serves as a TPC member in the premier con-
ferences in the related domain, including ICCAD,

FPT, HPCC etc.

Zizhang Luo is a PhD student in the School
of Integrated Circuits, Peking University, China.
His research interest includes computer architecture,
hardware-software codesign, and electronic design
automation. He has authored 4 scientific publica-
tions in top international conferences in the related
domains, including DAC, ISCA and MICRO.

Yun (Eric) Liang is an associate professor (with
tenure) in the School of EECS, Peking University,
China. His research interests include computer archi-
tecture, compiler, electronic design automation, and
embedded system. He has authored over 90 scientific
publications in premier international journals and
conferences in related domains. His research has
been recognized by best paper awards at FCCM
2011 and ICCAD 2017 and best paper nominations
at PPoPP 2019, DAC 2017, ASPDAC 2016, DAC
2012, FPT 2011, and CODES+ISSS 2008. He serves

as Associate Editor for ACM Transactions in Embedded Computing Systems
(TECS), ACM Transactions on Reconfigurable Technology and Systems
(TRETS), and Embedded System Letters (ESL). He also serves in the program
committees in the premier conferences in the related domain including
MICRO, DAC, HPCA, FPGA, ICCAD, FCCM, ICS, etc.

Jianwei Yin received the PhD degree in computer
science from Zhejiang University (ZJU) in 2001. He
was a Visiting Scholar with the Georgia Institute of
Technology. He is currently a Full Professor with
the College of Computer Science, ZJU. He has
published more than 100 papers in top international
journals and conferences. His current research inter-
ests include quantum computing, service computing
and business process management. He is an Asso-
ciate Editor of the IEEE Transactions on Services
Computing.

14

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3337208

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

