
Rubick: A Synthesis Framework for Spatial Architectures via
Dataflow Decomposition

Zizhang Luo∗
School of Integrated Circuits

Peking University
semiwaker@pku.edu.cn

Liqiang Lu∗
College of Computer Science

and Technology
Zhejiang University

liqianglu@zju.edu.cn

Size Zheng
School of Computer Science

Peking University
zhengsz@pku.edu.cn

Jieming Yin
School of Computer Science

Nanjing University of
Posts and Telecommunications

jieming.yin@njupt.edu.cn

Jason Cong
Computer Science Department

University of California
at Los Angeles

cong@cs.ucla.edu

Jianwei Yin
College of Computer Science

and Technology
Zhejiang University

zjuyjw@cs.zju.edu.cn

Yun Liang†

School of Integrated Circuits
Peking University

ericlyun@pku.edu.cn

Abstract—Dataflows are critical for spatial architectures designed for
tensor applications. Prior works develop various notations and hardware
generation frameworks for dataflows. However, due to the semantic gap
between notations and low-level details, analysis based on these notations
cannot capture the detailed architectural features between different
dataflows, so these works failed to provide architectural optimization
and efficient design space exploration (DSE) at the same time.

We propose Rubick, a synthesis framework for spatial architecture.
Rubick decomposes the dataflow into two low-level intermediate represen-
tations including access entry and data layout. Access entry specifies how
data enter into the PE arrays from memory, while data layout specifies
how data are arranged and accessed. Based on this decomposition, Rubick
provides efficient DSE and generates optimized hardware. Experiments
show that the DSE time is accelerated by up to 1.1 × 105X and
performance on FPGA is improved by 13%.

Index Terms—Dataflow architectures, Automatic synthesis

I. INTRODUCTION

Spatial architectures play a pivotal role in the acceleration of
various tensor applications [5], [7], [10], [12], [19]. A typical spatial
architecture features a processing element (PE) array with a scratch-
pad memory, which exhibits high compute parallelism and energy
efficiency. Besides, there are abundant interconnection resources that
connect PEs to support different datapaths and enable efficient data
reuse. Spatial architecture is a natural fit for tensor applications,
whose computation and memory access are highly regular but demand
high performance.

Hardware dataflow is the key component when implementing
applications onto spatial architectures. Recently, several frameworks
have been proposed for dataflow analysis and performance modeling
[8], [9], [14], [15], [17], [18], [25]. These existing frameworks model
the behaviors of loop instances that intertwine multiple tensors, and
model the spatial architecture in its entirety. However, different ten-
sors might have distinct characteristics and behavior (e.g., dimension,
size, movement, etc.). It is hard to infer the behavior of each tensor
from the high-level notation, including data access patterns and data
arrangements. On the other hand, spatial architectures consist of PEs
and memoy, which require different low-level architectural features.

Several works have proposed methods to analyze the architec-
tural details and synthesize RTL implementation from high-level

* These authors contributed equally.
† Corresponding Author

representation [10]–[12], [16], [22]–[24]. Tensorlib [10] generates
PE arrays by extracting three types of reuse vectors from space-
time transform, namely systolic, multicast, and stationary. Tensorlib
only exploits dataflow reuse. EMS [12] further analyzes the memory
subsystem by exploiting the intra-bank and inter-bank reuse vectors.
However, they focus on hardware generation for a specific or a
limited range of designs and do not provide a way to efficiently
explore the design space. TENET [17] can represent the complete
design space of hardware dataflows using relation-centric notation,
but lacks an efficient DSE approach. Moreover, since it neglects
the architectural implementation details, TENET can not be used for
dataflow optimization with specific hardware constraints such as fan-
in/fan-out.

In this paper, we propose Rubick, a synthesis framework for spatial
architecture. We analyze the structure of spatial accelerators and
propose two new low-level IRs to expose architectural details: access
entry and data layout to describe the computation and memory,
respectively. The spatial architecture dataflows can be decomposed
into these two IRs and vice versa, which provides opportunities for
efficient design space exploration (DSE). For each IR, we form a
design sub-space according to their characteristics, to eliminate illegal
or inefficient designs, which dramatically reduce the total space.
Finally, we propose an end-to-end synthesis flow based on these two
IRs, which can automatically explore the design space and generate
the spatial hardware implemented in Register-Transfer-Level (RTL).

The contributions of this paper are:

• We propose two new IRs access entry and data layout to bridge
the gap between dataflow and hardware. The new IRs can
express low-level details and can be composed to express high-
level information.

• We form the complete design space of dataflows according to the
new IRs. The decomposition in space improved DSE efficiency.

• We present an end-to-end synthesize flow of spatial architecture.

Our experiments demonstrate that Rubick can reduce 82.4% wire
resources with only 2.7% latency increase by optimizing access entry
IR. Rubick also accelerates the DSE time of dataflows by 1.6×103X
- 1.1×105X, saving the time from several days to minutes compared
to TENET [17]. The implementation on FPGAs shows Rubick can
find a better dataflow for 2D-CONV which improves the performance
by 13% compared with TensorLib [10] and EMS [12].

1

Fig. 1. (a) Spatial architecture overview. (b) Dataflow mapping illustration
and an example.

II. BACKGROUND

A. Tensor Basics

Tensor is defined as matrices to any number of dimensions. The
number of dimensions is defined as its order. For example, a scalar
is a zero-order tensor and a vector is a one-order tensor.

Iteration domain and loop instance. Given a loop nest with one
statement, its iteration domain DS is the set that contains all the loop
instances. Each instance S is labeled with a loop iterator n⃗ consisting
of loop variables i, j, · · · .

DS = {S(n⃗) | n⃗ = (i, j, · · ·)}

Tensor domain. The tensor domain is the set of all the elements
in the tensor. The dimension of the tensor domain is the same as its
order. The tensor domain of tensor A is denoted using n⃗′ consisting
of tensor indices.

DA =
{
A(n⃗′)

}
Access function. Given a loop instance, the access function returns

the tensor elements used by this instance, which can be regarded as
a mapping from iteration domain to tensor domain.

ADS→(DA,DB ,...) = {S(n⃗) → (A(n⃗′
A), B(n⃗′

B), · · ·)} (1)

For example, the instance, tensor domain, access function of GEMM
is written as follows.

S(n⃗) : Y (i, j)+ = A(i, k)×B(k, j), n⃗ = (i, j, k)

DA = {A(n⃗′) | n⃗′ = (i, k)}
ADS→(DA,DB) = {S(i, j, k) → (A(i, k), B(k, j))}

B. Spatial Architecture

Spatial architecture is an accelerator architecture that has the
structure shown in Fig. 1 (a). PE array and scratchpad memory are
the most important parts of the architecture. In this work, we assume
the PE array is a 2-dimensional matrix of PEs, denoted as a space-
stamp PE(p⃗), p⃗ = (x, y). Each PE contains a simple arithmetic
logic unit (ALU) and some data registers. We assume each cycle a
PE can operate once, denoted as a time-stamp T (⃗t), t⃗ = (t1, t2, · · ·).
We use the multi-dimensional time to resemble the loop nest, where
tis are loop variables and t1 is the innermost loop, and the sequence
is determined by the lexicographical order of time-stamp T (⃗t). PEs
interconnects with each other to allow data reuse between neighbors,
which can effectively increase data reuse opportunities and reduce
the memory bandwidth requirement. PEs can also access data from
scratchpad memory. The scratchpad memory is separated into banks
to support the parallel access of PEs. Address generators (AGs) are
used to select data from the banks.

C. Spatial Dataflow

The key component of the spatial architecture is the dataflow that
determines how a tensor kernel is mapped onto the architecture. The
dataflow is a mapping from one loop instance to a space-stamp and
time-stamp.

ΘDS→Dst = {S(n⃗) → (PE(p⃗) | T (⃗t))} (2)

Dataflow spacetime domain (Dst) is the domain that consists of
multiple spacetime-stamps (space-stamp and time-stamp), where each
spacetime-stamp refers to a PE at a certain cycle. ΘDS→Dst assigns
a loop instance S(n⃗) from the iteration domain to a spacetime-stamp
from the dataflow spacetime domain. The space-stamp PE(p⃗) gives
the coordinates of PE where the instance will be executed, and the
time-stamp T (⃗t) gives the execution sequence. For example, in Fig.
1 (b), S(1, 2, 3) → (1, 0|1) means the instance i=1, j=2, k=3 is
executed in PE(1,0) at cycle 1.

Tensor movement. A tensor movement is a part of the dataflow,
which gives the information of only one tensor at a time. Given
a tensor domain for a target tensor A with its index vector n⃗′, the
tensor movement is defined as a mapping from the dataflow spacetime
domain to the tensor domain.

MDst→DA
= {(PE(p⃗) | T (⃗t)) → A(n⃗′)} (3)

III. DATAFLOW DECOMPOSITION

The main novelty of Rubick is to decompose the dataflow into two
low-level intermediate representations (IRs): access entry and data
layout, which are expressive enough for architecture implementation.
Another benefit of the decomposition approach is the efficient design
space exploration. By defining rigorous architectural constraints for
the subspace corresponding to each IR, the combined space can be
significantly pruned.

Observing that the PE array and the scratchpad memory are two
major components of the spatial architecture, we take the entry points
between these two components as a natural separation, and thus a
tensor movement can be decomposed into two IRs. We derive these
two IRs by defining a new domain called the entry spacetime domain,
which acts as an intermediate domain.

Definition 1: Entry spacetime domain (Est) is defined as
the domain that consists of multiple spacetime-stamps Est =
{(E(p⃗e) | T (t⃗e))}. The spacetime-stamp refers to an entry port
E(p⃗e) at a certain cycle T (t⃗e), which loads data from memory and
sends them to the PE array.
With this new domain, we can bridge the gap between dataflow
notation and architecture implementation.

In this section, we first give the formal definition of access
entry, data layout, and decomposition (Section III-A). Then, we use
an example to illustrate how dataflow decomposition helps with
architecture implementation (Section III-B).

A. Dataflow Decomposition

To decouple each tensor behavior from a computational instance,
we first decompose it into different tensor movements by applying
the access function of each tensor.

ΘDst→DS
=

(
MDst→DA

⊗MDst→DB
, ...

)
×A(DA,DB ,···)→DS

(4)
Here, we choose to use the Cartesian product symbol ⊗ because the
merged access function maps to the Cartesian space of all tensors.
The × symbol means the chain composition of two mappings.
Considering that the output tensor indices of most tensor applications
are determined by the indices of input tensors, we only decompose

2

the dataflow into movements of input tensors in this paper. Taking
GEMM as an example,

ΘDst→DS
=

(
MDst→DA

⊗MDst→DB

)
×A(DA,DB)→DS

The tensor movement is further decomposed into access entry Ω
and data layout L. This helps to decouple the PE array part and
memory part from spatial architecture.

Definition 2: Access entry. Given a dataflow spacetime domain
Dst of a dataflow, the access entry is defined as a mapping from
Dst to the entry spacetime domain Est.

ΩDst→Est = {(PE(p⃗d) | T (t⃗d)) → (E(p⃗e) | T (t⃗e))} (5)

Here, (PE(p⃗d) | T (t⃗d)) is a dataflow spacetime-stamp that takes
place in PE(p⃗d) at the time-stamp T (t⃗d). The tensor used by this
dataflow spacetime-stamp comes from the entry space-stamp E(p⃗e)
at the entry time-stamp T (t⃗e). If two dataflow spacetime-stamps refer
to the same entry spacetime-stamp, it means they use the same tensor
data.

From an architectural perspective, access entry indicates how to
design the on-chip memory. The space-stamp p⃗e tells the dimension
of memory banks and their allocation. On the other hand, the time-
stamp t⃗e describes the access pattern of tensor data, which further
determines the PE interconnection.

Definition 3: Data layout. Given an entry spacetime domain Est

and tensor A domain DA, the data layout is defined as a mapping
from Est to DA,

LEst→DA
= {(E(p⃗e) | T (t⃗e)) → A(n⃗′)} (6)

Mathematically, this intermediate representation maps the indices
in the entry spacetime domain to the tensor indices. Therefore, it
explicitly depicts which tensor element is used by the entry E(p⃗e)
at T (t⃗e). Here, the term data layout is a general definition that not
only describes the data arrangement spatially but also the sequence
of the tensor accessed to/from entry points. Moreover, the tensor
size determines the boundary of each time dimension, which further
decides the memory size.

By defining access entry and data layout, the decomposition of
tensor movement is formulated as follows.

MDst→DA
= ΩA

Dst→Est
× LEst→DA

(7)

Taking GEMM as an example, the decomposition formula is written
as follows.

ΘDst→DS
=

(
ΩA

Dst→Est
× LEst→DA

)
⊗

(
ΩB

Dst→Est
× LEst→DB

)
× A(DA,DB)→DS

(8)

B. Decomposition Example

In this subsection, we use GEMM dataflow as an example to
illustrate dataflow decomposition. The dataflow is written as

ΘDS→Dst = {S(i, j, k) → PE(k, j%2) | T (i+ j%2, j/2)}

where the matrix size is set to 0 ≤ i < 2, 0 ≤ k < 2, 0 ≤ j < 4.
This dataflow involves 2 spatial dimensions (2×2 PE array), and 2
time dimensions (6 cycles in total).

Here, we only demonstrate the decomposition of tensor A. As
shown in Fig. 2 (a), according to Equation 4, the tensor movement
of A is written as follows.

MDst→DA = {PE(x, y) | T (t1, t2) → A(t1− y, x)}

Fig. 2. GEMM dataflow decomposition example. The data movement (a) of
tensor A is decomposed into access entry IR (b) and data layout IR (c). The
mathematical process can be written in matrix form (d).

For simplicity, we write the dataflow spacetime-stamp Dst in Fig. 2
as {(x, y | t1, t2)}.

Then, as shown in Fig. 2 (b) and (c), we formulate the access entry
and data layout of input tensor A according to Equation 7.

ΩA
Dst→Est

= {(x, y | t1, t2) → (x, 0 | t1− y, t2)}
LEst→DA

= {(E(x, 0) | T (t1, t2)) → A(t1, x)}

Identifying that the entry space-stamp is a 1D-vector (the second
dimension of the entry space-stamp is 0), we know that there is only
one memory bank of tensor A for PEs in the same row. On the other
hand, this IR maps (x, y | t1, t2) and (x, y+1 | t1+1, t2) in Dst to
the same entry (x, 0 | t1−y, t2), indicating that elements of tensor A
horizontally traverse across the PE array (along the y-axis). Thus, it
requires building interconnections between adjacent PEs in the same
row when designing the PE interconnection. The data layout of tensor
A further indicates that each memory bank should store a column of
tensor A, where all A(t1, x) are accessed at entry (x, 0).

The tensor movement is in fact the chain product of the access entry
and the data layout, which is equivalent to the matrix multiplication
equation in Fig. 2 (d). The tensor movement in the figure can be
separated into two parts. The access entry is the right part and the
data layout is the left part. Note that, the access entry IR only tells
there is a data access from entry to PE and its access direction. By
composing it with data layout IR, we can exactly figure out what
exactly this data is. For example, the data used by entry (0, 0 | 1, 0)
is A(1,0).

IV. DATAFLOW DESIGN SPACE

For a given dataflow, we can specify one of them and calculate
another according to Equation 7. Or, we can specify both to compose
the complete dataflow. Therefore, we can form the access entry space
and data layout space separately. The access entry space is formed as
a linear space that consists of multiple linear combinations of access
direction vectors (Section IV-A). The data layout space enumerates
all possible linear transformations that map spacetime-stamps to the
tensor domain (Section IV-B).

A. Access Entry Space

We assume that data are always accessed linearly, thus, the access
entry can be formulated as a linear combination of base vectors.
For example, access patterns like A[ai + j] are considered linear
while A[i2] is non-linear and not supported by our model. From an
architectural perspective, the base vector equals to direction vector

3

Fig. 3. Input access entry space on 2D-PE array. The space is formulated as tensor access direction vectors.

Fig. 4. Data layout space on 2D-PE array. The space is formulated as linear matrix transformation.

(dir-vec) r⃗ that indicates the direction of how tensor elements are
accessed across spatial dimension and time dimension. For a given
access entry, its direction vectors r⃗ all satisfy MDst→DA(r⃗) = 0.
Inversely, we can derive a unique access entry from a set of direction
vectors. According to the aforementioned assumption, the reuse
direction vector is a triple (x, y | t). In this manner, there are 7
basic direction vectors in total.
X-systolic: (1, 0 | 1) Y-systolic: (0, 1 | 1) Stationary: (0, 0 | 1)
X-multicast: (1, 0 | 0) Y-multicast: (0, 1 | 0)
Diag-systolic: (1, 1 | 1) Diag-multicast: (1, 1 | 0)

As these vectors form a 3D space at most, the number of direction
vectors for a specific access entry is up to 3. The number of all
possible direction vector combinations is C1

7 +C2
7 +C3

7 = 63. After
removing the repeated linear space and symmetric linear space, there
are only 14 access entry types. Fig. 3 lists all of them on a 2D-PE
array. Fig. 3 (a)-(c) are systolic patterns with horizontal, vertical and
diagonal (slope = 1) data transfer. In Fig. 3 (d), the first dimension
of time-stamp is 0, representing each PE keeps the tensor element
stationary for a while. Fig. 3 (e)-(g) are multicast networks where
entries spatially distribute like a 1D-vector. The last six access entries
in Fig. 3 (i)-(n) are hybrid patterns.

Note that Fig. 3 only depicts the cases of input access entry. By
reversing the access direction, it can also be applied to output access
entry. For example, multicast access entry means the partial sums
are generated simultaneously, while systolic access entry means the

partial sums are generated in continuous cycles.

B. Data Layout Space

Data layout space depends on both application (tensor domain)
and architecture (entry spacetime domain). We apply linear matrix
transformation when forming its space. Mathematically, there are
only three basic transformations: 1) swap two rows, 2) add one row
to another, and 3) multiply a row by a factor. The third one only
occurs in quasi-affine transformation if tiling is needed. The tensor
access behavior mainly depends on the first two transformations. Fig.
4 depicts how the linear transformation affects the data layout. Fig.
4 (b) swaps the order of spatial dimension x and the innermost time
dimension t1 when mapping the indices in Est to the indices in DA.
Compared to Fig. 4 (a), it acts like a transposition when tensor A is
a matrix. In Fig. 4 (c), we add (−x) to t1 in Est and map it to DA,
leading to data skewing.

V. SYNTHESIS FLOW

Rubick can efficently explore the design space of spatial hardware
and determines the optimal hardware design for a given tensor
application under certain constraints. The flow is shown in Fig. 5.

Input: Rubick accepts a tensor expression and some hardware
constraints like buffer capacity and resources as inputs. The access
entry space is accepted as an optional input in our flow to support
different target platforms, which may support different a subset of
the space, and may have a different implementation. For example,

4

Fig. 5. Rubick Synthesis flow

multicast access entries for input tensors may suffer bad frequency
on FPGAs. The user may specify the desired subspace and replace
the template if needed.

DSE: Rubick automatically explores the dataflows within the
design space. We separately enumerate the choices of access entry
and data layout for each tensor, which dramatically reduces the total
space. Other design parameters like the height and width of the
PE array can be also searched optionally. Some pruning techniques
based on the mathematical properties of the two IRs are applied,
e.g. legal dataflows should be a one-to-one mapping, time can not
be negative, etc. As a branch-and-prune algorithm, the theoretic time
complexity of DSE is exponential to the number of loops and tensors,
but dataflow decomposition allows early pruning of illegal points so
the actual DSE time is acceptable.

Output: Rubick outputs all legal dataflows in the form of two
IRs. RTL hardware can be generated according to the dataflows
with certain backends. Specifically, the PE array is composed of
access entry templates of each tensor, and the scratchpad memory
is composed of memory banks and address generators according to
data layouts. The templates are written in Chisel [3] for parametric
generation.

VI. EXPERIMENT

A. Experiment Setup

Benchmarks. We evaluate the following benchmarks.

GEMM Y (i, j)+ = A(i, k)B(k, j)

2D-CONV Y (n, k, ox, oy)+ = A(k, c, rx, ry)B(n, c, ox+ rx, oy + ry)

MMc Y (i, j)+ = A(i, k)B(k, l)C(l, j)

MTTKRP Y (i, j)+ = A(i, k, l)B(k, j)C(l, j)
(9)

GEMM and 2D-CONV are single kernels, which are widely used
in deep learning and scientific computing [1], [2], [13]. Matrix
multiplication chain (MMc) is used in the attention mechanism of
transformer models [6], [20]. Matricized tensor times Khatri-Rao
product (MTTKRP) tensor operation is the bottleneck operation in
tensor factorization (e.g., recommender systems) [4].

We apply Chisel compiler [3] to generate Verilog RTL. For FPGA
platform, we use Xilinx Vivado to synthesize the bitstream. For ASIC
implementation, we use Synopsys Design Compiler to estimate the
area and energy of under the UMC 55nm technology.

B. IR-based Exploration and Tradeoff

As aforementioned, the access entry describes the memory ports
and PE interconnection, which further determines the required
scratchpad bandwidth. Therefore, Rubick can be used to explore
various trade-offs among different hardware implementations by
analyzing the access entry of the dataflows.

Fig. 6. Using Rubick access entry IRs to explore hardware design. a-g means
the access entry type in Figure 3.

Fig. 7. Exploration-efficiency improved by Rubick.

Fig. 6 presents the trade-off between latency and fan-in/fan-out,
where each point is a complete dataflow for GEMM. The axis means
different access entry choices, while the color of points represents
the latency on the left and the fan-in/fan-out wires on the right. The
dataflows in group I require fewer wire resources, but with the longest
latency, as most tensors apply type-(a) or type-(b) access entry (refer
to Fig. 3). These two types show systolic movements, which need
fewer memory ports but take more cycles to load/store input/output
data. The dataflows in group III mainly feature with multicast access
entry types, which lead to lower latency but higher fan-in/fan-out
requirements due to more wires connected with the scratchpad. The
dataflows in group II are hybrids of group I and III. Overall, Rubick
allows users to make a trade-off between wire resources and latency.
For example, group I can reduce 82.4% wire resources compared to
group III, with only 2.7% latency increase. Note that this is a unique
feature of Rubick compared to prior techniques [10], [12], [15], [17].
The decomposition of dataflow exposed with the low-level details like
fan-in/fan-out enable efficient and accurate design space exploration
with hardware constraints.

C. Design Space Exploration Comparison

Fig. 7 compares the exploration time of Rubick with TENET [17],
which contains the complete space and provides a DSE solution.
The time is measured on Intel® Core™ i7-1165G7 @ 2.80GHz
with 16GB memory. Overall, Rubick accelerates the design space
exploration of dataflows by 1.6× 103X - 1.1× 105X. The reason is
the decomposition of design space efficiently reduces the total design
points, and the pruning techniques avoid the exponential growth of
complexity as the number of loops grows. The shape of these tensors
is not specified, since the size of the PE array and compute precision
are vertical to our design space.

D. FPGA Implementation

Table I compares the FPGA performance of Rubick with AutoSA
[23], TensorLib [10] and EMS [12] on 2D-CONV. We select the

5

TABLE I
FPGA PERFORMANCE COMPARISON

Device LUT DSP BRAM MHz GFLOP/s

AutoSA [23] U250 56% 77% 30% 272 950
TensorLib [10] VU9P 73% 75% 73% 245 626
EMS-WS [12] VU9P 76% 73% 53% 301 731
EMS-OS [12] VU9P 83% 73% 53% 295 717

Rubick VU9P 37% 56% 10% 322 826

Fig. 8. Area and power breakdown via GEMM dataflow decomposition. The
X-axis is different dataflows notated by access entry. E.g., (bda) means, tensor
A, B, Y applies type-(a), type-(d), type-(b) access entry from Figure 3.

late layers on VGG-19 [21] with FP32 precision as the test bench.
We limit the access entry space to suit the features of FPGAs to
search for better dataflows. We remove all access entries with a
multicast direction vector for the input tensors due to the limited
routing resource and improve the frequency by 7%. We select the
X-multicast access entry for the output tensor (i.e. adder trees) to
avoid data interleaving, which saves BRAM by 5X since only one tile
needs to be processed at a time. Rubick also optimized the hardware
generation flow. LUT and DSP are further optimized as we can fully
analyze the data movement thus simplifying the control logic by
avoiding handshaking and additional FIFOs. Overall, we improve the
peak performance by 13% compared with EMS-WS [12].

E. Area and Power on ASIC

We also synthesize the RTL for ASIC designs. Fig. 8 (a) and (b)
present the area and power breakdown of various GEMM dataflows
on an 8×8 PE array with 16-bit integer arithmetic on ASIC. We
observe that the output access entry accounts for the most area
as it needs to implement reduction operations (e.g., adder tree,
accumulators). Dataflows with multicast entries require less area
as they only need wires to broadcast data. The memory power is
negligible due to the small PE array size. Multicast entries require
more energy due to their large fan-out. Stationary entries type-(d) are
the most energy-saving one as their registers are idle in most cycles.

VII. CONCLUSION

In this work, we propose Rubick, a synthesis framework for spatial
architecture. Our dataflow decomposition features two intermediate
representations access entry and data layout, which formally and
systematically provide the implementation details of spatial architec-
ture. We also propose a complete dataflow design space by separately
forming the subspace of these two intermediate representations.
Based on these IRs we proposed the Rubick synthesis flow for design
space exploration and hardware generation, which accelerates the
DSE time of dataflows by up to 1.1×105X, compared to TENET [17].
Finally, Rubick enables various low-level implementation optimiza-
tions for certain hardware platforms, and improves the performance
of 2D-CONV on FPGA by 13%, compared to EMS [12].

ACKNOWLEDGEMENTS

This work was supported in part by the National Key R&D
Program of China under Grant (No. 2022YFB4500401) and National
Natural Science Foundation of China under Grant (No. 61825205).

REFERENCES

[1] M. Abadi, P. Barham, J. Chen et al., “Tensorflow: A system for large-
scale machine learning,” in Proceedings of OSDI, 2016.

[2] A. Anandkumar, R. Ge, D. Hsu et al., “Tensor decompositions for
learning latent variable models,” The Journal of Machine Learning
Research, 2014.

[3] J. Bachrach, H. Vo, B. Richards et al., “Chisel: constructing hardware
in a scala embedded language,” in Proceedings of DAC, 2012.

[4] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings of KDD
cup and workshop, 2007.

[5] Y.-H. Chen, T.-J. Yang, J. Emer et al., “Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 2019.

[6] J. Devlin, M.-W. Chang, K. Lee et al., “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in NAACL-HLT,
2019.

[7] H. Genc, S. Kim, A. Amid et al., “Gemmini: Enabling systematic deep-
learning architecture evaluation via full-stack integration,” in Proceed-
ings of DAC, 2021.

[8] K. Hegde, P.-A. Tsai, S. Huang et al., “Mind mappings: enabling
efficient algorithm-accelerator mapping space search,” in Proceedings
of ASPLOS, 2021.

[9] Q. Huang, A. Kalaiah, M. Kang et al., “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in Proceedings of ISCA, 2021.

[10] L. Jia, Z. Luo, L. Lu et al., “Tensorlib: A spatial accelerator generation
framework for tensor algebra,” in Proceedings of DAC, 2021.

[11] L. Jia, Z. Luo, L. Lu et al., “Automatic generation of spatial accelerator
for tensor algebra,” to appear in the IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems(TCAD), 2022.

[12] L. Jia, Y. Wang, J. Leng et al., “EMS: efficient memory subsystem
synthesis for spatial accelerators,” in Proceedings of DAC, 2022.

[13] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, 2009.

[14] H. Kwon, P. Chatarasi, M. Pellauer et al., “Understanding reuse, perfor-
mance, and hardware cost of dnn dataflow: A data-centric approach,” in
Proceedings of MICRO, 2019.

[15] H. Kwon, P. Chatarasi, V. Sarkar et al., “Maestro: A data-centric
approach to understand reuse, performance, and hardware cost of dnn
mappings,” IEEE Micro, 2020.

[16] Y.-H. Lai, H. Rong, S. Zheng et al., “SuSy: A Programming Model
for Productive Construction of High-Performance Systolic Arrays on
FPGAs,” in Proceedings of ICCAD, 2020.

[17] L. Lu, N. Guan, Y. Wang et al., “Tenet: A framework for modeling
tensor dataflow based on relation-centric notation,” in Proceedings of
ISCA, 2021.

[18] A. Parashar, P. Raina, Y. S. Shao et al., “Timeloop: A systematic
approach to dnn accelerator evaluation,” in Proceedings of ISPASS, 2019.

[19] M. Pellauer, Y. S. Shao, J. Clemons et al., “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,” in
Proceedings of ASPLOS, 2019.

[20] A. Radford, J. Wu, R. Child et al., “Language models are unsupervised
multitask learners,” OpenAI blog, 2019.

[21] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in arXiv preprint arXiv:1409.1556,
2014.

[22] N. Srivastava, H. Rong, P. Barua et al., “T2s-tensor: Productively gener-
ating high-performance spatial hardware for dense tensor computations,”
in Proceedings of FCCM. IEEE, 2019.

[23] J. Wang et al., “Autosa: A polyhedral compiler for high-performance
systolic arrays on fpga,” in Proceedings of FPGA, 2021.

[24] R. Xu, Y. Xiao, J. Luo et al., “HECTOR: A multi-level intermediate
representation for hardware synthesis methodologies,” in Proceedings of
ICCAD, 2022.

[25] X. Yang, M. Gao, Q. Liu et al., “Interstellar: Using halide’s scheduling
language to analyze dnn accelerators,” in Proceedings of ASPLOS, 2020.

6

